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Abstract

This master thesis studies the ecological expansion of electricity distribution systems.

At first, we will examine a distribution system situated in the Californian Bay area. Its
network structure and topological characteristics are extracted in order to generate a typi-
cal distribution system feeder using duplication of certain network structures.

The second part of the thesis is devoted to a new framework for designing low voltage
parts of a distribution system when customers are allowed to install photo voltaic (PV) sys-
tems. A convex multi-stage perfect foresight optimization problem minimizing the system
annuity is then proposed and solved based on the framework’s assumptions. This optimiza-
tion problem computes how much complementary technologies have to be installed next to
the chosen PV systems. The results tell us that the battery energy storage system (BESS)
construction is prioritized as it reduces the development of the needed maximal power ca-
pacity of the low voltage lines.

Finally, the customer behavior is studied as a response to flat rate, time of use and real
time retail pricing using linear and convex multi-stage stochastic optimization problems.
Flat rate and time of use pricing induce inappropriate customer response while real time
pricing results in ecologically efficient network and enhanced financial behavior.
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Introduction

Motivation

The recent discoveries related to climate change have shown that the way we deal with
energy has to evolve. These discoveries lead to social as well as political reactions inducing
radical changes in mentalities around the earth. In the field of energy three main bottlenecks
can be identified in order to make this transition towards a reduced ecological footprint fea-
sible.

The first step towards this evolution is related to the production of energy which has tra-
ditionally been done using fossil fuels. These resources are limited and their reserves are
decreasing from day to day. This part is being extensively studied from multiple scientific
point of views and alternatives such as Renewable Energy Sources (RES) are constantly
improved through research. Countries such as Germany have already been able to highly
increase their renewable energy production, now representing 30 % of their total power mix
[5]. Individual customers are now also encouraged to participate to the efficient production
of energy by installing RES to reduce their own ecological footprint and electrical bill.

The second step corresponds to how we consume energy. A change in mentality can now
be observed from the consumer point of view. Indeed, the awareness of the consumer for
climate change has evolved and many individuals are doing their best to reduce their eco-
logical footprint. In [6] we see that in most countries at least 70 % of the population is
aware of climate change and the threat it represents for humanity. This also influences the
vision of many companies which are trying to reduce their own ecological footprint for eth-
ical reasons and also in order to induce a positive customer image. Initiatives to influence
car brands to design Electric Vehicles (EV) as well as consumer discounts on EV’s are also
currently growing in popularity in many countries.

The final, generally forgotten, highly relevant step towards an ecological transition is the
efficient dispatch of energy. It is not only sufficient to adequately produce and consume
energy, it is also important to bring this energy to the individual consumer in an efficient
way. The electricity supply chain (connecting generators with consumers) stands at the
center of this transition. New network technologies such as micro grids, distributed gen-
eration, battery energy storage systems and consumer photo voltaic panels are changing
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the way these systems have to be planned and designed. The electricity supply chain (also
called power system) is depicted in Figure 1. It has traditionally been divided in three parts:

1. Production: Here the electricity is generated, usually through the use of power plants.
These plants can generate electricity using a multitude of methods going from the com-
bustion of fossil fuels to the use of potential energy extracted from water originating
from rivers and dams. This raw electricity is usually obtained at Extra High Voltage
(EHV).

2. Transmission: Once the electricity has been generated it needs to be brought to the
customers who can be situated at a large distance from the source. In order for this
to be done the generated electricity is transformed to High Voltage (HV) reducing
transportation losses due to the Joule effect.

3. Distribution: After it has been transported over high distances, the electricity arrives
at the distribution substation which transforms it into Medium/Low Voltage (MV/LV)
so as to distribute it in the area close to the substation. Generally, distinction is made
between urban, sub-urban and rural area. The customers who can be industrial, com-
mercial or residential connect to the different parts of the distribution system depend-
ing on the quantity of power withdrawn from the network.

Figure 1: The electricity supply chain (taken from [1]).

Objectives

Two different topics are considered in this thesis.

The first one addresses the need for realistic distribution system instances to test optimal
dispatch models and algorithms. Indeed, as research of the electricity supply chain has been
moving towards the study of distribution systems it has been important to be able to test
developed models and methods on some realistic test instances which are very scarce at the
moment.
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The second one investigates power systems from an economical point of view using mathe-
matical optimization. By enhancing the electrical supply chain with new technologies, the
individual consumer will be in a position to make appropriate decisions to control his en-
ergy exchange with the network. He will indeed be able to reduce his payment by injecting
energy into the network at the right time. More specifically, the attention will be focused on
the design and retail pricing of distribution systems as a response to changes in customer
behavior. The following questions will be addressed and answered:

1. How should a low voltage subnetwork optimally be designed in order to maximize
the power system welfare?

2. How will distribution system customers equipped with a PV system and a BESS react
to different retail pricing options?

3. What are the consequences from a network point of view of high RES penetration at
consumer level?

State of the art

The approach considered in this thesis focuses on how low voltage parts of distribution sys-
tems need to be designed for the integration of RES. One should note that the framework
that will be presented in this thesis is new and does not rely on many pre-existing studies.

So far, research about the design of distribution systems has merely been studied from a
feeder, thus larger, framework. In [7] the impact of batteries on distribution substations
is studied using the maximization of the net present value of the system. A multi objec-
tive nonlinear problem formulation is proposed and solved using nondominated sorting
genetic algorithms. A similar approach is also taken in [8] but here, the reinforcement of
transformers, lines, capacitors and installation of distributed generation is considered. This
model considers a detailed version of the network and solves the non linear problem using
modified discrete particle swarm optimization. Both articles suppose that the demand is a
deterministic component. Low voltage network design has however been investigated from
a geographical point of view in the past. In [9] a model is proposed based on evolution
strategies in order to plan the geographical expansion of low voltage parts of distribution
systems. Recently an economical study of a micro grid situated in Garowe, Somalia as been
made in [10]. This article studies the performance of two micro grid energy management
systems and what the optimally installed PV system capacity and BESS capacity should be
in order to minimize the system annuity.

The influence of integrating Low Carbon Technologies (LCT) on distribution system feeders
has been studied from a network stability point of view in [11]. Consequences on voltage
issues and line congestion are studied by making simulations using typical demand and PV
system power output data. The different pricing options for distribution systems have also
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been investigated using economical principles in [12] without taking into account the im-
pact of LCT. The reactions of households to dynamic pricing as well as other consequences
of using dynamic pricing are studied using available statistical data. In [13] a discussion is
made on progress, opportunities, and issues related with dynamic pricing.

Other mathematical approaches have also been taken. In [14] a stochastic bi-level model is
set up in order for the DSO and Retailer to maximize their net present value by optimally
choosing prices for the entire network. The customers defined by a demand response model
are here seen as the followers whereas the DSO and Retailer represent the leader. The model
is solved by integrating the KKT conditions of the follower model into the leader model and
casting the problem as a mixed integer linear problem.

Overview of the thesis

In Chapter 1 the necessary theory about distribution systems will be presented as well as
the mathematical theory needed to understand the subsequent chapters. Then, in Chapter
2 a typical distribution system will be studied from a structural and topological point of
view in order to easily generate typical distribution system instances and understand their
characteristics. This will allow us to set up a new framework for designing and studying low
voltage parts of distribution systems in Chapter 3. And finally, with the results of Chapter
4, we will establish the optimal behavior to be adopted by distribution system customers as
a response to different retail tariff options.

4



Chapter 1

Preliminary notions about distribution
systems and mathematical concepts

1.1 Distribution systems

Distribution systems typically have a radial structure (e.g. a tree structure). The energy
generally arrives at the root of the system using transmission lines and is then redistributed
to the customers through the branches of the distribution network.

Transmission

Distribution

Figure 1.1: Radial distribution system
illustration.

Figure 1.2: Block schematic of a distri-
bution system (taken from [2])

These systems are usually divided into three parts:

1. Distribution substation: The high voltage electricity first arrives at the distribution
substation through transmission lines where it is downgraded to medium voltage.
The distribution substation corresponds to the HV/MV transformer in Figure 1.2.

2. Medium voltage level (1 - 36 kV): Here, some large customers can be connected (for
example the railway, large industrial partners, etc). The electricity is then transported
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over a defined region in order for it to be in close range of the individual customers.
This part is often called primary distribution.

3. Low voltage level (< 1 kV): Once the medium voltage level is close enough to the
individual customer the electricity is stepped down to low voltage using step down
transformers. This low voltage level then connects the individual customers which
are situated close to the step down transformer. The length of new LV lines is usu-
ally limited to around 500 m or even less [2]. This part is often called secondary
distribution or low voltage supply.

A distribution feeder is then defined as a subnetwork rooted at the distribution transformer.
It always contains one medium voltage level connected to multiple step down transformers
which connect to individual customers. As low voltage induces more losses compared to
medium voltage it is preferred to maximize the span of the primary distribution in order to
reduce the use of low voltage cables [15]. The medium voltage part will therefore usually
contain more buses and cables compared to low voltage. Normally, multiple feeders take
their root at the distribution substation. These feeders are usually designed in order to
satisfy the demand of a specific area. One also has to note that the transformers correspond
to the gates between voltage levels.

1.1.1 Organization of electricity distribution in Belgium

The price written on our electricity bill is a mystery for an important fraction of the Belgian
population. That is most likely due to the fact that the way distribution systems are operated
is more complicated than it looks. The bill you pay originates from two separate operations
done in order to bring the electricity to your residence. First, there is the price of electricity
you buy from a retailer of your choice (e.g. Engie, Mega, etc..). The retailer is responsible
for the generation, storage and retailing of the electricity and thus has to make sure that
electricity is always available. This first component will thus be competitively adapted to
the market.

Figure 1.3: Organization of distribution systems and influence on the electricity price.
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The second component, which originates from the electricity supply chain, is due to the
utilization of the transmission and distribution systems. These systems are unique and op-
erated by the Transmission System Operator (TSO) and the Distribution System Operator
(DSO) which own the assets and thus posses a natural monopoly. In order for the DSO and
TSO to not be able to take advantage of their monopoly it has been decided that this price
component is decided by state held regional regulators. These regional regulators were cre-
ated in the early 2000s because operators are subject to regulatory oversight by a European
directive implemented in Belgian law due to their natural monopoly [16]. However, as
mentioned previously, these operators often only posses the infrastructure and do not deal
with the day to day operation of the systems which they delegate to legally separate service
companies.

Two actors can thus be identified in our case. The retailer, whose objective is to maxi-
mize his profit while avoiding black outs at all costs and the DSO which is responsible for
the proper operation of the distribution system.

1.1.2 A contradictory aspect of the distribution systems

With the growing numbers of PV systems and batteries two major issues will arise in the
organization of distribution systems. These technologies indeed allow the individual con-
sumer to control his interaction with the grid. Giving him the possibility to inject excess
power in the grid in return of a reduced bill at the end of the month. At first sight this looks
like a way of reducing power shedding as this excess power can be redistributed to other,
more consuming, consumers.

However, the way we price electricity will influence this customers behavior. He will in-
deed more likely inject power during a period with higher return price thus increasing the
chance of having multiple consumers injecting electricity at the same time. Because DSO’s
are unable to posses storage facilities by law, this might lead to oversupply which will even-
tually have to be thrown away. The other drawback of this democratization of PV systems
and BESS is the fact that feeders have been designed given a maximal power the lines have
to withstand. The customers will most likely try to minimize their bill at the end of the
month without taking this into account. The influence of these new technologies will in-
duce similar customer behavior thus increasing the risk of line saturation. The retail pricing
methods represent here the key to controlling and estimating the customer behavior.

7



1.2 Mathematical concepts

Some relevant mathematical concepts for the next chapters will now be presented.

1.2.1 Stochastic optimization

Stochastic optimization is the branch of optimization that is concerned with problems influ-
enced by uncertain parameters. Two typical ways of tackling these problems are presented
and will be used in subsequent chapters.

Multi-stage stochastic optimization

We suppose that the system can be described using a Markov decision model. This means
that given a set of time steps T = {0, . . . , H}we suppose that the realization of uncertainty of
the system, denoted by ξ, can fully be characterized by a set of nodes wt ∈ Ωt . These nodes
correspond to individual realization of ξ where Ωt represents the set of all nodes in time
step t. From the definition of the Markov decision process it comes that the probability of
going to a specific node at the next time step does not dependent of the previous realizations
of uncertainty but only of the current realization of uncertainty

P(wt+1|wt , . . . , w0) = P(wt+1|wt) ∀t ∈ T \ {H} ,∀wt ∈ Ωt ,∀wt+1 ∈ Ωt+1.

This can be visualized using two models called the lattice representation and the scenario

(a) Lattice (b) Scenario tree

Figure 1.4: Uncertainty representations (taken from [3]).

tree representation as shown in Figure 1.4. Where the nodes of the scenario tree correspond
to histories of random realizations such that

ξ[t] = (ξ0, . . . ,ξt),
w[t] = (w0, . . . , wt).
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The set Ω[t] is then defined as the set of all possible scenarios in time step t. We define
a(w[t]) as the ancestor of w[t], thus meaning that if

w[t] = (w0, . . . , wt),

then
a(w[t]) = (w0, . . . , wt−1),

where the the ancestor of a certain scenario can also be the ancestor of another scenario in
the same time stage. It should be noted that Ωt and Ω[t] are not the same and respectively
represent the nodes assigned to individual uncertainty realizations during one time step and
the nodes assigned to all possible histories of random realizations until time step t.

The scenario tree representation thus represents a way to consider all sequences of un-
certainty realizations from time step zero to time step t using nodes. These nodes are
interconnected by edges representing the transition probabilities between these sequences.
The lattice model represents a way to consider all individual realizations of uncertainty
for each time step modeled by nodes. These nodes are then also interconnected by edges
representing the transition probabilities between these uncertainty realizations. The lattice
representation is a compact version for displaying the realizations of uncertainty whereas
the scenario tree representation may contain an exponential number of nodes. It should
be noted that one can easily switch between both representations using basic probability
theory.

Multi-stage stochastic problem

A set of stage and action variables x = [x0, . . . , xH] are defined. They respectively cor-
respond to the variables describing the state of the system (the state of a system can for
example be the energy level of a battery which will change throughout the time-stages)
and to the decisions influencing the future state of the system (for example how much we
charge a battery which will change the energy level of the battery in the following period).
We define a policy as a function returning an decision based on the considered scenario of
the scenario tree. The cost function C

w[ t]
t defined such that

C
w[t]
t (x

w[t]
t ) : R→ R ∀t ∈ T,∀w[t] ∈ Ω[t],

represents the cost at time step t if the system is in node w[t] of the scenario tree and deci-

sion x
w[ t]
t is made.

Having defined the necessary concepts used for modeling the uncertainty and decisions
we define a Multi-stage Stochastic Problem (MSP). This problem returns the optimal policy
used to minimize the expected cost of the system over the considered horizon (from time
step 0 to time step H). If we define Wt as the current stage coefficient matrix, Tt as the
previous time stage decision coefficient matrix and h

w[t]
t as the current stage realization of
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uncertainty in scenario w[t] we obtain Model 1. Objective 1.1a corresponds to the mini-
mization of the expected cost over the considered horizon while constraint 1.1b links the
decision variables at subsequent time stages.

Model 1: Multi-stage stochastic optimization problem.

minimize
x

∑

t∈T

∑

w[t]∈Ω[t]

P(w[t])C
w[t]
t

�

x
w[t]
t

�

(1.1a)

subject to Wt x
w[t]
t = h

w[t]
t − Tt x

a(w[t])
t−1 , t ∈ T, w[t] ∈ Ω[t], (1.1b)

x
w[t]
t ≥ 0, t ∈ T, w[t] ∈ Ω[t].

It should be noted that linear constraints are considerd while the objective can be non-linear
depending on the definition of function C

w[t]
t (x

w[t]
t ).

Multi-stage perfect foresight problem

Another approach can also be taken to study these types of problems. This approach is
called the perfect foresight and consists in sampling a fixed amount of scenarios in the sce-
nario tree. The decisions have then to be made on the individual scenarios meaning that
the uncertain parameters are now considered as deterministic for each scenario. The mean
scenario cost is then minimized over the considered horizon. This model is useful for com-
paring the stochastic model with the fact of having perfect information about the future
uncertainty realizations. It can however difficultly be used for making real time decisions.
Let S be the set of of sampled scenarios through the scenario tree. We keep the notation of
Model 1, giving us Model 2.

Model 2: Multi-stage perfect foresight optimization problem.

minimize
x

∑

t∈T

∑

s∈S

1
|S|

C s
t

�

x s
t

�

subject to Wt x
s
t = hs

t − Tt x
s
t−1, t ∈ T, s ∈ S, (1.2a)

x s
t ≥ 0, t ∈ T, s ∈ S.

It should be noted that constraint 1.2a will only link the subsequent decisions of the same
sampled scenario while this will link all ancestor scenarios to the considered scenario in
constraint 1.1b.
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1.2.2 Competitive markets and economic dispatch

The competitive market model is presented from a mathematical point of view and classical
results will be deduced in order to derive retail prices in Chapter 4.

Let A define a set of n agents exchanging resources. These resources are often referred
to as commodities representing scarce resources that are traded without differentiation at
a single market price, denoted by λ. Let the considered market be a competitive market as
defined in [1].

Definition 1.2.1. Competitive market: A market is competitive if the following conditions
hold:

• Agents are price-taking. Mathematically, this means that when agents maximize profit
they consider price as a fixed parameter in their optimization, rather than a decision
variable that can be influenced by their actions.

• The variable costs of producers are convex, equivalently their marginal costs are in-
creasing. Analogously, the total benefit of consumers is concave, equivalently the
marginal benefit of consumers is decreasing.

• Agents are fully informed about the market prices.

We suppose that each agent makes a set of decisions xa in Rta which will influence the
quantity of exchanged resources, denoted by qa which is positive if they are bought and
negative if sold. Let fa(xa) represent the individual customer benefit function. We also
define

ga(xa)≤ 0

a set of constraints specific to agent a and

ha(xa) = qa

a set of resource allocation constraints depending on the agent. Functions fa(xa), ga(xa)
and ha(xa) are convex. A final constraint is then added in order to model the exchange of
goods between agents, this constraint is called the market clearing condition and is defined
such that

∑

a∈A

qa ≤ 0,

which means that more resources are sold compared to procured resources. The profit max-
imization of agent a is then defined as in Model 3. He tries to find a solution maximizing
his personal welfare while satisfying his own constraints. The economic dispatch problem,
which can be found in Model 4, is defined such that total welfare of the system is maximized
while satisfying all the agent’s constraints and the market clearing constraint.
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Model 3: Profit maximization of
agent a.

minimize
xa, qa

fa(xa)−λqa

subject to ga(xa)≤ 0,

ha(xa) = 0

Model 4: Economic dispatch prob-
lem.

minimize
xa, qa

∑

a∈A

fa(xa)

subject to ga(xa)≤ 0 ∀a ∈ A,
∑

a∈A

ha(xa) = 0

The competitive equilibrium can then be defined similarly as in [1].

Definition 1.2.2. Competitive equilibrium: A competitive equilibrium over multiple prod-
ucts is defined as a set of prices λ, agent decisions xa and commodity procurements qa such
that:

• (qa, xa) maximize the profit of agent a , i.e. they solve Model 3.

• market clearing holds:
0≤ λ⊥

∑

a∈A

qa ≤ 0.

The following proposition can then be proven and will be very important for later chapters.

Proposition 1.2.1. A competitive market equilibrium satisfies the KKT conditions of Model
4. Therefore, a competitive market equilibrium results in an optimal solution of 4, i.e. a
globally optimal allocation of resources. The converse also holds, namely a primal-dual
solution to the KKT conditions of 4 is a competitive equilibrium.

Proof. See [1].

This proposition thus tells us that the optimal solution of the economic dispatch problem cor-
responds to the individual welfare maximization of all agents as well as the market clearing
constraint. It also tells us that λ will be given by the dual multipliers of the market clearing
constraint.
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Chapter 2

Generation of realistic distribution
system instances

2.1 The need for realistic instances

As research regarding the electricity supply chain has been moving towards the study of
distribution systems it became important to be able to test developed models and methods
on some realistic test instances. However, as theses systems are usually a few decades old
it logically comes that the amount of systems of which the size and topology ar available is
really small. This number nevertheless increases due to the augmenting demand. Also, the
available information often lacks some key statistics which help us to understand how these
systems work. This is why, as a first step in order for us to understand them, it becomes
interesting to dive deeper into their structure and to derive some features which will be used
when generating new distribution systems instances. This chapter will thus serve as a guide
to generate distribution system instances of given size using available distribution system
data. We will therefore focus on a specific distribution system situated in the Californian
Bay area of the United States. The generation of new instances will then be done using
duplication of specific parts of this network.

2.2 Bay area synthetic network

The San Francisco bay area is a region situated in the north of California state in the United
States. It is said to be composed of nine counties and spans over an area of 18966 km2.
Data of the distribution system in this area has been made available at [17] and has been
made using the U.S. Reference Network Model (RNM-US)[18] which synthetically creates
distribution systems using GIS files. This network has been generated over 7 counties and
is provided in Open-DSS format (software used for the simulation of distribution system
behavior).
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Type High Voltage Medium Voltage Low Voltage
Voltage in network 230 kV 69 kV 12.47 kV 7.2 kV 0.48 kV 0.12 kV

Table 2.1: Identified voltage levels of the Bay area distribution network.

0.12 kV 0.48 kV 7.2 kV 12.47 kV 69 kV 230 kV
0.12 kV No No Yes No No No
0.48 kV No No No Yes No No
7.2 kV Yes No No No No No

12.47 kV No Yes No Yes Yes No
69 kV No No No Yes No Yes
230 kV No No No No Yes No

Table 2.2: Connection of the different voltage levels via transformers.

The bay area network is composed of six different voltage levels as shown in Table 2.1.
Table 2.2 shows us the connection between voltage levels and has been extracted using
the transformer information. We thus see that the network follows a typical structure as
illustrated in Figure 2.1. This can be deduced knowing that 0.12 kV sub networks are only
connected to 7.2 kV sub networks and that 0.48 kV sub networks are only connected to
12.47 kV sub networks. As no transformers exist between the 7.2 kV sub networks and the
higher voltage levels we deduced that the 7.2 kV sub networks are connected to the 69 kV
sub networks. However, this lack of information results in the fact that we are not able to
find the root of the 7.2 kV sub networks. This would indeed have been provided by the
transformer of the distribution substation.

Figure 2.1: Schematic of the bay area network structure.

Figure 2.1 explains the purpose of each voltage level. First of all, the 230 kV network
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corresponds to the connection with transmission lines. The electricity is then stepped down
to 69 kV in order for it to be transported over the Bay area. Indeed, as we are dealing with a
very large region multiple distribution substations will be needed in order for the electricity
to be redistributed through feeders. Once the electricity arrives at the distribution substation
it is then stepped down to 7.2 kV or 12.49 kV depending on it’s future use. Let us consider
both possibilities:

• 12.49 kV: The electricity is then transported through one of the feeders of the pri-
mary distribution which connects to the distribution substation. Then, when it is close
enough to the customer it is then stepped down to 0.48 kV which does not correspond
to the voltage level of American households. An initial guess would be to think that
the customer load profile will have an industrial shape.

• 7.2 kV: Again the electricity is transported through one of the feeders of the pri-
mary distribution which connect to the distribution substation. Then, when it is close
enough to the customer it is then stepped down to 0.12 kV which corresponds to the
voltage level of American households. The customer load profiles will thus likely look
like typical household profiles.

A first observation can be made here, two separate types of consumers can be identified and
are not supplied by the same feeders. This difference is of key importance when generating
new instances and depends on the type of customers we want to consider. As the purpose
of this chapter is to be able to generate typical distribution system instances we will only
consider the generation of feeders containing 7.2 kV sub networks and the associated 0.12
kV sub networks. We are not interested by the 69 kV clusters as these correspond to high
voltage lines and are not part of the distribution system. A similar methodology can of
course be applied to 12.49 kV systems.

2.3 Structural aspects

In order to generate realistic instances by duplication of existing parts of the network we not
only have to understand its schematic overall outer structure but also the inner structure and
operation of its voltage levels. This means we would like to know of how many buses (i.e.
nodes of the network), how many load buses (i.e. customers of the network represented
by a node) and what type of loads (characterized by their maximal power withdrawal) are
part of these networks. Thus helping us in choosing the right parts to duplicate.

This is done using clusters of nodes corresponding to sub networks of the same voltage
level delimited by transformers. The clusters are created using the algorithm presented in
appendix A.1 which gives us the results of Table 2.3. This algorithm creates clusters in a
recursive way by continuously adding neighboring nodes until only edges corresponding to
transformers are left.
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Type High Voltage Medium Voltage Low Voltage
Voltage in network 230 kV 69 kV 12.47 kV 7.19956 kV 0.48 kV 0.120089 kV
Amount of clusters 1 39 13 54 40351 293035

Table 2.3: Amount of clusters per voltage level of the Bay area network.

We can immediately conclude that low voltage clusters are way more prominent compared
to high and medium voltage clusters. This can be explained by the typical structure of
feeders thus resulting in few very large medium voltage clusters and many small low voltage
clusters. Indeed, as feeders are designed for specific areas the medium voltage part will have
to reach as close as possible to the low voltage customers thus spanning over large regions
and creating many low voltage clusters connected to individual step down transformers.

2.3.1 Low voltage

Figure 2.2 shows histograms of the number of buses, number of load buses and nominal
load of the load buses for the 0.12 kV and 0.48 kV clusters obtained using the algorithm
presented in Appendix A.1. The 0.12 kV clusters clearly correspond to households. Indeed,
when looking at Figure 2.2e we can see that the nominal load of these customers exactly
correspond to the typical household values. As expected, it can be noted that these voltage
clusters usually contain a small amount of buses and load buses. This is highly important
when trying to generate distribution system instances and will have to be taken into account.

Next, Figures 2.2a, 2.2d and 2.2f confirm our intuition about the 0.48 kV clusters. They
are usually composed of two nodes, corresponding to the transformer gate and the connec-
tion with the customer (load bus). Indeed, when looking at Figure 2.2b we see that these
clusters usually contain two nodes while Figure 2.2d shows us that they usually have one
load bus. This can be explained by the fact that small industrial customers (farms for exam-
ple) are often situated far from each other thus meaning that in order to reduce the amount
of low voltage transportation there have to be many low voltage clusters. Finally, Figure
2.2f confirms our assumption by showing that the nominal load (also called peak load) of
the customer achieves high values which cannot correspond to household demand but is
more likely to correspond to small industrial consumers.
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Figure 2.2: Histograms for the low voltage levels.

2.3.2 Medium voltage

Figure 2.3 shows histograms of the number of buses, number of load buses and nominal
load of the load buses for the 7.2 kV and 12.47 kV clusters obtained using the algorithm
presented in Appendix A.1. Figures 2.3a and 2.3b show us that the medium voltage clusters
contain a high amount of buses. This supports the explanation of the previous section and
confirms that the bay area distribution network uses indeed the typical feeder structure.
The medium voltage clusters usually have zero or a small amount of load buses as shown
in Figures 2.3c and 2.3d. These loads correspond to heavy industrial profiles (railways for
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example). This is confirmed by Figures 2.3e and 2.3f which show very high values for their
nominal loads.
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Figure 2.3: Histograms for the medium voltage levels.

2.4 Network generation

As we now understand the structure and topology of the bay area network there is still
one question that remains unanswered: How do we generate realistic distribution system
instances?. In other words, what makes a network a real distribution system and what are
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the characteristics we should be looking for. As we are trying to generate typical structures
using existing network components we will have to decide which components of the clusters
we will duplicate and identify the important features these components should have:

• Medium voltage should be a concatenation of typical radial feeder structures which
take their root in the same bus. The interesting components here become the indi-
vidual feeders of each medium voltage level and will thus be the duplicated medium
voltage part.

• Low voltage should be connected via a transformer to each transformer gate of the
medium voltage feeders. The template component thus represents the entire low
voltage cluster. This cluster should have the typical LV network inner structure as
explained in the previous section.

2.4.1 Low Voltages

Figures 2.4a and 2.4b show two typical low voltage clusters of the distribution system. We
can clearly identify a radial structure. The root has been identified using the step down
transformer. This, again, confirms that the primary purpose of low voltage is to connect the
customer to the medium voltage over small distances.

Line
Bus
Load
Root

(a) 0.12 kV

Line
Bus
Load
Root

(b) 0.48 kV

Figure 2.4: Typical low voltage clusters.

2.4.2 Medium voltage

Figure 2.5a and 2.5b show us typical 7.2 kV and 12.49 kV clusters. Both examples are
only composed of a majority of transformer gates, corresponding to connections with lower
voltage levels. This, again, illustrates the purpose of the medium voltage. We clearly see
that it spans over large areas in order to be as close as possible to the customers.
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Line
Transformer gate

(a) 7.2 kV

Line
Load
Transformer
Root

(b) 12.47 kV

Figure 2.5: Typical medium voltage clusters.

The alert reader might have seen that the 7.2 kV example has no visible root node. As ex-
plained before, no transformer information was provided which would allow us to identify
the root of the cluster. This issue has been bypassed using the ampacity and number of
phases of the lines. The ampacity is defined as the maximum current, in amperes, that a
conductor can carry continuously under the conditions of use without exceeding its tem-
perature rating. A phase is defined as a unique wire connecting two nodes. A distinction is
thus made between mono phased lines and three phased lines respectively corresponding
to one line and three lines connecting two electrical buses. This implies that lines closer to
the root of the network will have high ampacity and be three phased as they have to carry
more power and thus more current. Figure 2.6 shows the network in Figure 2.5a with its
identified root node and the high ampacity three phase lines of the network.

Low Ampacity Line
High Ampacity Line
Transformer gate
Root

Figure 2.6: 7.2 kV example of Figure
2.5a with ampacity of lines.

Line
Transformer gate
Root

Figure 2.7: Maximum spanning tree of
the 7.2 kV example in Figure 2.5a.

Also it may have been remarked that both examples in Figure 2.5 contain cycles, thus con-
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tradicting the radial assumption of the distribution system. This phenomenon is especially
present in larger medium voltage clusters. Knowing that the radial structure is often consid-
ered as an assumption for distribution system optimization models it becomes interesting
to modify the initial structure of the network in order to make it radial without modifying
it’s core structure.

This has been done using Prim’s minimum spanning tree algorithm [19]which can be found
in Appendix A.2. Suppose we have a graph G = (V, E) then the minimum spanning tree of a
graph H = (V, A) is defined as the subgraph without cycles spanning over the entire node set
V with the smallest sum of the edge weights. As the ampacity indicates where the electric-
ity is supposed to be flowing with large magnitudes it is relevant to compute the maximum
spanning tree of the voltage cluster where the edge weights correspond to the number of
phases of the line times the ampacity. This means we will be selecting the high ampacity
three phase lines before the other lines types thus keeping the core structure of the network.
Prim’s algorithm can be easily transformed into a maximum spanning tree algorithm giving
us Figure 2.7. Note that we have only applied the algorithm on the 7.2 kV instance as we
are only interested in generating these types of networks. The same reasoning can of course
be applied to the 12.47 kV clusters.

Line
Transformer gate
Root

(a) 260 node branch

Line
Transformer gate
Root

(b) 101 node branch

Line
Transformer gate
Root

(c) 206 node branch

Line
Transformer gate
Root

(d) 391 node branch

Figure 2.8: Branches of the 7.2 kV cluster example in Figure 2.7.
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Having identified the root and removed the cycles of the clusters it now becomes interest-
ing to have a look at each individual branches leaving the root node in Figure 2.7. These
branches correspond to the medium voltage part of the independent feeders and are dis-
played in Figure 2.8.

2.4.3 Final instance

Suppose now that we would like to generate a typical feeder of a distribution system using
the MV template from Figure 2.8b. This means we would have to stitch low voltage clusters
to each individual transformer of the MV part of the feeder. We do this using the extracted
LV templates from Appendix A.3. By stitching one randomly sampled LV template to each
transformer we are able to generate network structures such as Figure 2.9. One can note
that we dropped the geographical placement of the buses as we are stitching parts together
that are not geographically related. It thus becomes more interesting to show the tree struc-
ture of the created network.

This network can now for example be used to compare different optimal dispatch algo-
rithms designed for distribution systems.

Figure 2.9: Feeder created by stitching typical LV clusters to the transformers of one typical
MV voltage branch.
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Chapter 3

Design of distribution systems: a new
framework

The installation of PV systems has been investigated from the point of views of economical
efficiency [12] and influence on distribution networks [20]. This is why it becomes inter-
esting to study how to design distribution systems in order to cope with the presence of PV
systems in LV clusters. A new framework is presented for designing and studying LV parts
of distribution networks given a number of customers willing to install PV panels. The as-
sumption will be made that customers and retailers work together in order to maximize the
total welfare of the system which is not the case in reality. The amount of battery capacity
and line capacity will be decided in order to cope with the demand and store excess PV
production. At first this framework will be presented and explained. Then, an optimization
model will be deduced based on the assumptions made in the previous sections and tested
on a realistic test case. Finally, results will be discussed and conclusions will be drawn.

3.1 Framework

We create a model based on the typical structure of distribution systems representing the
interaction between the different actors involved. It is composed of three nodes as shown in
Figure 3.1. Nodes 1 and 2 (leaf nodes) correspond to low voltage clusters thus representing
an aggregate of consumers. These nodes posses the following features and must satisfy the
following constraints:

• They both have a BESS which can be charged and discharged according to the user’s
will.

• They both have a set of PV systems which produce power depending on the outside
weather. Combining batteries with PV systems allows us to understand the optimal
behavior of customers possessing these infrastructures as a response to pricing meth-
ods. Also, it will show us how the batteries can be optimally used in order to minimize
the production costs of the entire system.
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• They can withdraw/send infinite power from/to the grid.

Figure 3.1: Schematic of the considered framework.

As both nodes correspond to LV clusters it becomes important to note that the logistical
parameters such as the capacity of the batteries for example are not necessary the same for
both systems.

Node three (root node) corresponds to the primary distribution connected to the transmis-
sion lines via the distribution substation. The actors controlling this node are the distribution
system retailers as well as the DSO of the system.With this assumption, we can study the
influence of interface prices on the congestion of the electrical lines. It will also show us
later that both actors will have to work closely together in the future. The root node has the
following features and constraints based on the duties of retailers and DSO’s:

• It is connected to the transmission lines via the distribution substation.

• It has to satisfy the demand of the leaf nodes or pay a high price also known as the
value of lost loads.

• It can choose the price of energy sold to the leaf nodes.

• It has to make sure that the capacity of the lines is never exceeded.
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A final important assumption made is the fact that root node and leaf nodes work together
in order to maximize the total welfare. In reality, this is not true as customers and retailers
obviously want to maximize their own profit.

3.2 Infrastructures

Writing optimization models for the use and installation of technological infrastructures
requires minimum knowledge about the technical and behavioral aspects of these instal-
lations. Two main first stage decisions have to be made corresponding to the BESS and
maximal power flow allowed between root and leaf node.

Capacity and charge/discharge rate are the two only parameters which are chosen when
designing the BESS. The system has three main components which will have to be adapted
to the chosen parameters. The most obvious one is the battery module itself, it is the physical
infrastructure that will store chemical energy. Next, a BESS converter is needed to convert
the chemical energy stored in the battery to electrical energy. Finally, the balance of plant
of the BESS stands for everything left related to the installation of the battery such as, for
example, the wiring and switches of the system. The C-rate of a BESS corresponds to the
ratio between charge/discharge rate and battery capacity. This C-rate depends on the type
of battery technology considered and will have to be taken into account when designing the
system.

Next, the line capacity of the LV system has to be decided. Two components have to be
designed when setting up a low voltage network. The step down transformer connecting
the LV network to the cluster serves as a first component. Indeed, different transformer
models are available depending on the required nominal power of the module. Then, the
capacity of the lines connecting the step down transformer to the individual customers has
to be determined. It is important to note that approximating low voltage clusters by one
node forces us to consider a fixed capacity on the flow between root and leaf node while
this is not necessarily the case in reality. This maximal flow is thus the only parameter that
has to be decided for the LV cluster.

3.3 Finding the optimal design

In order to design the optimal network connecting the medium voltage to the low voltage
individual customers it becomes interesting to write an optimization problem to minimize
the production cost and investment cost. The number of households and PV systems of each
LV clusters is supposed to be fixed. The line capacity and battery storage of each leaf node
are seen as decisions. We define L as the set of leaf nodes of the model. In our case L
will be equal to {1,2} as we are only considering two leaf nodes. We define I as the set of
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infrastructures that can be installed, such that

I =
�

line capacity, battery energy capacity, battery charge/discharge rate
	

.

It has been decided that a perfect foresight model similar to Model 2 will be used. This
approach has already been successful for similar problems in the past [21]. The idea here is
to create a perfect foresight model where the first stage decisions correspond to the installed
capacities of all technologies.

3.3.1 Objective

The objective of the optimization problem is

min
∑

i∈I

∑

l∈L

�

A(ICi, LTi) · vl,i

�

+
∑

s∈S

∆t
|S|

∑

t∈T

�

TC(ps
t) +

∑

l∈L

VOLL · lss
l,t

�

.

Parameter ICi corresponds to the investment cost of component i in I . It is also called
the overnight cost which refers to the fact that this cost is paid initially when setting up
the installation and is thus not influenced by its usage. Parameter LTi corresponds to the
lifetime of component i. Function A : (R+,R+)→ R+ represents the fixed daily equivalent
cost formula, given daily discounting, and is defined as

A(ICi, LTi) =
ICi · r

1− 1
(1+r)LTi

,

where r represents the discount rate. The fixed daily equivalent cost is a lump sum that
needs to be paid daily for having one unit of a certain technology available [1]. Variable
vl,i corresponds to the number of units of technology i which is installed in leaf node l. It
has been chosen to use a general variable vl,i in order to reduce unnecessary mathematical
notation. However, in the extensive form of the optimization problem these variables will
be replaced by their real notation defined in the subsequent sections. Variable ps

t represents
the amount of power in kW withdrawn from the transmission lines by the root node during
times step t of sampled scenario s. Variable lss

l,t represents the amount of load which is
shed1 in leaf node l during times step t of sampled scenario s. Function TC(ps

t) : R+→ R+
represents the total cost of withdrawing ps

t from the transmission lines. Parameter VOLL is
the value of lost loads and stands for the value per kW of not serving a customer.

It is also important to note that the objective function corresponds to the annuity of the
system. The annuity of the system represents the daily cash flow required for setting up,
powering, managing and operating two new low voltage clusters. No management and op-
erating cost has been included in the objective due to the fact that these are less influenced

1Load shedding stands for not serving the demand in one of the leaf nodes. This demand has a certain
cost, often denoted by the value of lost loads.
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by the design decisions. The objective is therefore divided in two parts. The first component
corresponds to the installed units of technology in both nodes. While the second component
stands for the cost of managing power optimally throughout a set of sampled days. One can
note that in a perfect foresight point of view the installed capacity can be considered as first
stage decisions whereas the optimal management of the system corresponds to the next time
stage decisions.

3.3.2 Constraints

Battery Energy Storage System

The energy tank model is adopted for the batteries, yielding the following constraint:

x s
l,t = x s

l,t−1 +∆tηbcs
l,t−1 −∆t

bd s
l,t−1

µ
∀l ∈ L,∀t ∈ T \ {0} ,∀s ∈ S,

where x s
l,t represents to the energy available expressed in kWh in the battery of leaf node l

during time step t of scenario s, bcs
l,t and bd s

l,t respectively represent the battery charge and
discharge rate expressed in kW of the battery in leaf node l during time step t of scenario s.
Parameter ∆t stands for the interval between two time steps and is expressed in hours. Pa-
rameters µ and η define the battery charge and discharge efficiency, they are both elements
of [0,1]. We impose an empty tank at the start and end of the considered horizon

0= x s
l,H +∆tηbcs

l,H −∆t
bd s

l,H

µ
∀l ∈ L,∀s ∈ S,

0= x s
l,0 ∀l ∈ L,∀s ∈ S.

The bounds on the BESS variables are defined by the installed capacities,

0≤ bcs
l,t ≤ Rl ∀l ∈ L,∀t ∈ T,∀s ∈ S,

0≤ bd s
l,t ≤ Rl ∀l ∈ L,∀t ∈ T,∀s ∈ S,

0≤ x s
l,t ≤ Cl ∀l ∈ L,∀t ∈ T,∀s ∈ S,

where Rl corresponds to the maximal charge rate of the battery in leaf node l thus replacing
previously declared variable vl,battery charge rate and Cl represents the capacity installed in leaf
node n and thus replaces variable vl,battery energy capacity. We add constraint

κCl = Rl ∀l ∈ L,

knowing that the C-rate of batteries links the capacity of the batteries to the maximal
charge/discharge. Where κ is the C-rate of the considered battery type.
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Power Flow

Optimal Power Flow (PF) has been regarded as one of the most important problems in power
systems. We opt for the DC linear model approximation of power flow. Other models would
represent overkill for the considered purpose. Indeed, the system approximates electrical
buses by aggregating nodes. The other, more complicated, optimal power flow models are
thus unnecessary. By using Figure 3.1 and the definition of flow through a network we get
the following constraint for the PF at the root node:

∑

l∈L

f s
l,t = ps

t ∀t ∈ T,∀s ∈ S.

where f s
l,t is defined as the flow sent from the root node to leaf node l, during time step t

of scenario s. The same reasoning can be applied to the leaf nodes, giving us

Dl,t + bcs
l,t + pss

l,t = f s
l,t + bd s

l,t + lss
l,t + SyslRPs

l,t ∀l ∈ L,∀t ∈ T,∀s ∈ S,

parameters Dl,t and RPs
l,t respectively represent the the deterministic demand in leaf node

l and the renewable power output of one PV system in time step t of scenario s. The de-
mand of the leaf nodes is deterministic while the PV power output is chosen to be stochastic.
Parameter Sysl stands for the amount of PV systems installed in leaf node l. Variable pss

l,t
stands for the excess power thrown away in leaf node l and is called power shedding vari-
able. Finally, by considering the bounds induced by the positivity and design decisions of
each technology, we get that

0≤ ps
t ∀t ∈ T,∀s ∈ S,

0≤ pss
l,t ∀l ∈ L,∀t ∈ T,∀s ∈ S,

0≤ lss
l,t ≤ Dl,t ∀l ∈ L,∀t ∈ T,∀s ∈ S,

−Fl ≤ f s
l,t ≤ Fl ∀l ∈ L,∀t ∈ T,∀s ∈ S.

The variable Fl represents the amount of line capacity connecting leaf node l and the root
node. It replaces variable vl,line capacity.
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3.3.3 Final model

For the sake of clarity we put all constraints together, giving us Model 5. A list of the entire
nomenclature can be found in Appendix B.1.

Model 5: Optimal design of low voltage networks.

minimize
p,ps,ls, f ,bc,
bd,x ,Cl ,Rl ,Fl

∑

i∈I

∑

l∈L

�

A(ICi, LTi) · vl,i

�

+
∑

s∈S

∆t
|S|

∑

t∈T

�

TC(ps
t) +

∑

l∈L

VOLL · lss
l,t

�

subject to x s
l,t = x s

l,t−1 +∆tηbcs
l,t−1 −∆t

bd s
l,t−1

µ
, l ∈ L, t ∈ T \ {0} , s ∈ S,

0= x s
l,H +∆tηbcs

l,H −∆t
bd s

l,H

µ
, l ∈ L, s ∈ S,

0= x s
l,0, l ∈ L, s ∈ S,

κCl = Rl , l ∈ L,

0≤ bcs
l,t , l ∈ L, t ∈ T, s ∈ S,

0≤ bd s
l,t , l ∈ L, t ∈ T, s ∈ S,

0≤ x s
l,t , l ∈ L, t ∈ T, s ∈ S,

bcs
l,t ≤ Rl , l ∈ L, t ∈ T, s ∈ S,

bd s
l,t ≤ Rl , l ∈ L, t ∈ T, s ∈ S,

x s
l,t ≤ Cl , l ∈ L, t ∈ T, s ∈ S,

∑

l∈L

f s
l,t ,= ps

t , t ∈ T, s ∈ S,

Dl,t + bcs
l,t + pss

l,t ,= f s
l,t + bd s

l,t + lss
l,t + SyslRPs

l,t , l ∈ L, t ∈ T, s ∈ S,

0≤ ps
t , t ∈ T, s ∈ S,

0≤ pss
l,t , l ∈ L, t ∈ T, s ∈ S,

0≤ lss
l,t , l ∈ L, t ∈ T, s ∈ S,

lss
l,t ≤ Dl,t , l ∈ L, t ∈ T, s ∈ S,

−Fl ≤ f s
l,t , l ∈ L, t ∈ T, s ∈ S,

f s
l,t ≤ Fl , l ∈ L, t ∈ T, s ∈ S

This model is convex as we only have linear constraints and TC(ps
t) is designed in order

to be convex. This means that every local optimum will be a global optimum [22] allowing
us to rely on standard solvers used for these types of models.
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3.4 Test case

We now test our model for some parameter values and study the results in order to determine
what should be the optimal design of the system.

3.4.1 Computational characteristics

The computational parameters of the implementation can be found in Table 3.1 and have
been chosen in order to have reasonable computation time while keeping a high detailed
version of the problem.

∆t H max
t
|Ωt | |S|

15 minutes 95 10 6000

Table 3.1: Computational characteristics.

3.4.2 Leaf node characteristics

The characteristics of the leaf nodes are shown in Table 3.2 and have been chosen based
on the results of Section 2.3.1. The deterministic demand has been generated using aggre-

Node Households Total line length PV systems µ η κ

1 10 1 km 2 0.9 0.9 2
2 15 1.5 km 3 0.9 0.9 2

Table 3.2: Characteristics of the leaf nodes.

gates of daily demand profiles of the model described in [23]. This model generates high
resolution demand data and is based upon a combination of patterns of active occupancy
(i.e.when people are at home and awake), and daily activity profiles that characterize how
people spend their time performing certain activities. The model generates typical demand
profiles given a month and a number of occupants. In this case the demand profiles have
been generated for the month of November and Table 3.3 provides the number of house-
holds for each occupancy level in the leaf nodes. The created profiles have been displayed in

Occupants 1 2 3 4 5 Total
Households in node 1 1 2 4 2 1 10
Households in node 2 2 3 5 3 2 15

Table 3.3: Number of households for each occupancy level.
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Figure 3.2. The initial one minute interval data has been transformed in 15 minute interval
data by computing the average value of 15 consequent time steps .
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Figure 3.2: Demand profiles of the leaf nodes in the experimental setup.

The lattice of uncertainty defining the PV output has been created using [24]which provides
a chronological probability model of photo voltaic generation on the basis of conditional
probability and non-parametric kernel density estimation. This model perfectly adjusts for
the lattice model of uncertainty as it computes the conditional probability density function
between adjacent time steps. Generating these conditional probability density functions
requires initial data in order to compute the required parameters. The California Solar
Initiative, a solar rebate program for Californian electricity consumers, provides simulated
solar data for a set of approximately five hundred CSI PV installations [25]. This data covers
5 years of 15 minute interval PV output data. A specific system called PGE-SASH-4101
located in San Jose, California has been chosen among all systems.
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Figure 3.3: Lattice nodes generated for
the lattice model.

Figure 3.4: Set of 20000 samples gener-
ated by the scenario generator using the
lattice model.
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California is known to be one of the most sunny areas in the United States and thus fits
perfectly for our case study. Indeed, as we are looking for high PV penetration this PV
system will perfectly fit our needs. It has a peak output of 3 kW corresponding to a typical
household PV system. For the sake of computational simplicity it will be supposed that the
PV output of all PV systems is the same regardless of the leaf node associated to it. This is
justified by the assumption that both leaf nodes correspond to adjacent LV clusters implying
that the PV output should be highly correlated between two systems. Each node of the
lattice will thus represent a common power output for all PV systems. Figure 3.3 and 3.4
respectively show the nodes of the lattice for each time step and a set of PV output samples
generated by the model.

3.4.3 Costs

As explained before, the objective function is composed of two parts. The parameters of
the second part, corresponding to the design of the network, can be found in Table 3.4.
The first part parameters, coming from the design decisions of the system, can be found

Parameter MC(ps
t) TC(ps

t) VOLL

Value 0.008ps
t
€

kWh 0.004(ps
t)

2€
h 8.3 €kWh

Table 3.4: Costs related to the management of the network.

in Table 3.5. The BESS parameters have been taken from [10] and have been obtained by
private communication with companies working in the sector. The LV cluster parameters
are computed using available information in [9].

BESS

Component Module Converter BoP

ICi 270 €kWh 80 €kW 200 €kWh

LTi 15 years 20 years 20 years

A(ICi, LTi) 0.06955 €
kWh day 0.01716 €

kW day 0.04291 €
kWh day

LV cluster

Component Lines Transformer

ICi 800 €
kW km 189 €kW

LTi 25 years 25 years

A(ICi, LTi) 0.15176 €
kW km day 0.03585 €

kW day

Table 3.5: Investment cost, lifetime and fixed daily equivalent cost of the considered tech-
nologies.
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One can note that the fixed daily equivalent investment cost of constructing low voltage
cluster line capacity is higher compared to the fixed daily equivalent investment cost of
constructing a BESS. This will influence the optimal design decisions and should thus be
kept in mind when reading the subsequent sections.

3.5 Results

The implementation has been made using programming language AMPL and is solved using
the Gurobi solver with the default barrier algorithm. The used computer has an Intel(R)
Core(TM) i7-8550U CPU with eight threads at 1.80GHz and 16Gb of RAM memory. The
_solve_time is equal to 837.88 s while the _ampl_time is equal to 49.68 s, they respec-
tively represent the time needed to solve the model and the preparation time needed to set
up the model. As this model has been created in order to design systems it means that it will
have to be run only once to get the optimal first stage decisions, implying that more samples
could have been generated during the set up. However, increasing the size of S would result
in memory errors an is due to the fact that a 15 minute interval has been chosen between
subsequent time steps. The first stage decisions are shown in Table 3.6.

Leaf node F C R
1 7.5503 kW 10.2514 kWh 5.1257 kW
2 8.12091 kW 17.3315 kWh 8.66576 kW

Table 3.6: Optimal first stage decision variables of Model 5 with the test case of Section 3.4.

3.5.1 Interpretation

The decision variables define a network composed of positive line capacity and positive
battery capacity that never needs to shed load. A first intuition is to think that battery
capacity has been created to store the excess PV output.
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Figure 3.5: Average energy stored in the battery when using Model 5. Two charging periods
can be identified.
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This is indeed true but it is not the only explanation for high battery investment. As noted
previously, we have seen that the annualized investment cost of BESS is lower than the
annualized investment cost of LV cluster capacity thus resulting in the fact that BESS invest-
ment will be prioritized. Using Figure 3.5 we see that the storage facility is filled during
the first six hours of the day. No PV production can be measured at that period. This can
be explained by the fact that as batteries have lower investment cost it is interesting to use
them in order to reduce line capacity. Indeed, having more storage capacity than needed
allows the user to smooth his downwards flow throughout the day and thus reduce his peak
demand. This is confirmed by Figure 3.6, which shows that during periods of low demand
excess flow is sent to the leaf nodes while during periods of high demand the flow often
equalizes the maximal built capacity and has a lower value compared to the demand curve.
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Figure 3.6: Comparison between demand, maximal flow and minimal flow for both leaf
nodes over time. From 0 to 5 am f s

l,t is always greater or equal to Dl,t .

When looking at the average battery energy in Figure 3.5 we see that two periods can be
identified. The first one corresponds to the period from 0 am to 8 am. The battery is filled
during the first six hours before demand starts to increase in node one. This high demand
is then satisfied using the stored energy of the battery in addition with the PV supply if the
weather conditions allow it. During the second period, from 9 am to 12 pm, we see that
the battery is again charged until 5 pm and discharged during the peak power period going
from 8 pm to 12 pm. The battery thus serves as a way to anticipate higher demand.

Finally, by imposing that no power can be provided using transmission lines ( i.e. ps
t = 0 for

all t in T and for all s in S) we get the results of Table 3.7. One can observe that less BESS
capacity has been created because it cannot be used any more to smooth the flow between
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root node and leaf node and confirms our inference. Also, it can be seen that line capacity
will still be needed. This can be explained by the fact that investing in line capacity allows
the leaf nodes to exchange power thus reducing the production cost.

Leaf node F C R
1 3.251 kW 8.773 kWh 4.335 kW
2 3.251 kW 8.819 kWh 4.476 kW

Table 3.7: Optimal first stage decision variables when ps
t = 0 for all t in T and for all s in S.
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Chapter 4

Influence of retail pricing on customers
and network congestion

In Chapter 3 the network has been designed in order to maximize the system welfare. How-
ever, this cannot be easily applied in reality. Customers, DSO’s and retailers do not usually
work together, implying that new assumptions will have to be made. The initial framework
of Chapter 3 is kept but assumptions are modified.

In this chapter, we consider that each node now makes his decisions individually. This
means that the leaf nodes will have to decide whether to charge or discharge their batteries
and whether to sell or buy electricity from the root node in order to minimize their payment
while the root node will have to choose the way it prices electricity in order to maximize its
own profit. This chapter will thus compute and study the optimal reaction of the customers
in the created network to different pricing methods which are currently applied in distri-
bution systems or have been proposed as alternatives. This behavior will then be studied
from a network point of view and conclusions will be drawn regarding the congestion of the
network.

4.1 Assumptions

We consider the same framework as depicted in Figure 3.1 but behavioral changes are as-
sumed for the different actors involved and are summarized in Figure 4.1 The root node
now decides the interface price knowing that it has to manage the system and thus make
sure that the line capacities are not exceeded. This price will influence the behavior of the
customer thus indirectly influencing how electricity will have to be supplied and when it
will have to be generated. The customer, on the other hand, manages his battery optimally
in order to minimize his payment and thus maximize his profit. He thus does not care if the
line capacities are exceeded. This will have to be kept in mind as in Chapter 3 we explained
that battery capacity has been created in order to reduce line capacity.
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Figure 4.1: Schematic illustrating the behavior of the individual actors involved in the
considered framework.

4.2 Available pricing methods

In Belgium, two pricing methods are available to customers. These pricing methods are
called flat rate pricing and time of use (also called tarif bi-horaire) pricing.

4.2.1 Flat rate

Flat rate corresponds to the simplest form of pricing electricity, it simply computes the total
amount of electricity consumed and multiplies it with a constant value that has been decided
beforehand by the retailer. This price is available for the customer and his payment can thus
be computed using

Pc =∆E ·λ,

where Pc corresponds to the customers payment, ∆E corresponds to the energy consumed
during the considered interval (in kWh) and λ corresponds to the tariff price (in €

kWh). It
should be noted that the payment can be reduced if the customer sends energy to the root
node.

4.2.2 Time of use

On the other side, time of use pricing represent a way of pricing electricity which is time
dependent. Two periods are identified for this pricing option. First, the peak period corre-
sponding to a higher price during day time, often going from 8 am to 10 pm depending on
the considered municipality. Secondly, the off peak period standing for the remaining night
time period with a lower price. These prices are available for the customer and can thus be
computed using

Pc =∆Et ·λt ,

where ∆E and λ are time dependent.

4.2.3 Optimization model

We create a stochastic optimization model used for computing the optimal management
strategy for the leaf nodes. This model will help us understand the optimal behavior of
the customer as a reaction to the imposed prices. The leaf node index notation has been
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dropped for the sake of clarity, giving us Model 6.

Model 6: Optimal leaf node behavior.

minimize
x , f , bc, bd

∑

t∈T

∑

w[t]∈Ω[t]

P
�

w[t]
�

λt∆t f
w[t]

t

subject to x
w[t]
t = x

a(w[t])
t−1 +∆tηbc

a(w[t])
t−1 −∆t

bd
a(w[t])
l,t−1

µ
, t ∈ T \ {0} , w[t] ∈ Ω[t],

0= x
w[H]
H +∆tηbc

w[H]
H −∆t

bd
w[H]
l,H

µ
, w[H] ∈ Ω[H],

0= x
w[0]
0 , w[0] ∈ Ω[0],

0≤ bc
w[t]
t , t ∈ T, w[t] ∈ Ω[t],

0≤ bd
w[t]
t , t ∈ T, w[t] ∈ Ω[t],

0≤ x
w[t]
t , t ∈ T, w[t] ∈ Ω[t],

bc
w[t]
t ≤ R, t ∈ T, w[t] ∈ Ω[t],

bd
w[t]
t ≤ R, t ∈ T, w[t] ∈ Ω[t],

x
w[t]
t ≤ C, t ∈ T, w[t] ∈ Ω[t],

Dt + bc
w[t]
t + ps

w[t]
t = f

w[t]
t + bd

w[t]
t + SyslRP

w[t]
t , t ∈ T, w[t] ∈ Ω[t],

0≤ ps
w[t]
t , t ∈ T, w[t] ∈ Ω[t]

A stochastic optimization problem is proposed. The customer wants to minimize his ex-
pected cost over the considered time horizon. This model is very similar to Model 5 defined
in Section 3.3.3. The objective changes, we lose the line capacity constraints as well as the
power flow constraints at the root and the model is adapted in order to work with a sce-
nario tree representation of uncertainty. This model is linear and can easily be solved using
conventional solvers. Note that for flat rate pricing we have that λt1

= λt2
for all t1, t2 in T .

4.3 Test case

A general test case is created to compare all pricing methods with each other. Smaller com-
putational characteristics will be used, otherwise excessive computation times would be
needed given that a stochastic model is chosen instead of the perfect foresight approach.
Table 4.1 shows the considered computational characteristics of the test case. The determin-
istic demand data and PV production models of Section 3.4.2 have been kept. The demand
profiles are the same as in Figure 3.2 but have been averaged over two hours instead of 15
minutes. The lattice model has also been adapted for the computational parameters of Table
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∆t H max
t
|Ωt | |S|

2 hours 11 5 50000

Table 4.1: Computational characteristics of the test case.

4.1. Both the new demand profiles and lattice model can be found in appendix C.1. The first
stage decisions of Table 3.6 are now considered as parameters of the problem. Finally, λt

is taken from [4] and can be found in Table 4.2. Parameter λ corresponds to the electricity
price in €

kWh . Other parts also have to be added to the payment but are not dependent of
the quantity of energy withdrawn and are thus not included.

Pricing method Flat rate Time of use

Peak 0.2672 €
kWh 0.2041 €

kWh

Off peak 0.2672 €
kWh 0.2833 €

kWh

Table 4.2: Electricity prices taken from [4].

4.4 Results

Both models have been tested using the test case of Section 4.3 and the same computer as in
Chapter 3. Again, this has been implemented using programming language AMPL using the
Gurobi solver with the default dual simplex algorithm. The computation times are given
in Table 4.3.

Node 1 Node 2

Time Flat rate Time of use Flat rate Time of use

_ampl_time 12.05 s 10.22 s 12.04 s 11.56 s

_solve_time 12.90 s 11.81 s 15.15 s 15.64 s

Table 4.3: Computation times for solving Model 6 with the test case of Section 4.3.

4.4.1 Flat rate

In this case, the optimal behavior can be easily derived using logical reasoning. The battery
efficiency hypothesis implies that more power needs to be transferred to store the same
quantity of energy. Hence, it is more interesting for the consumer to sell immediately its
excess supply to the root node. He will indeed be able to buy it back at the same price later,
thus meaning he has not wasted any energy due to BESS efficiency losses. Further, he will
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never buy unnecessary power to anticipate possible high loads in subsequent time stages.
The implementation confirms the results as the battery is never charged during any time
step. By defining the net demand, with symbol NDwt

l,t , as

NDwt
l,t = Dl,t − SyslRPwt

l,t

we are able to plot Figure 4.2. We see that the minimal and maximal flows entering each
leaf node respectively equal the maximal and minimal net demand for each time step and
each leaf node thus confirming our inference.
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Figure 4.2: Comparison of the maximal and minimal flow going to the leaf node with
maximal and minimal net demand for flat rate pricing.

Next, it is also interesting to have a look at how the behavior of both leaf nodes will influence
the power withdrawn from the transmission lines and when power shedding at the root node
will occur due to simultaneous upwards flow of both leaf nodes.

0 5 10 15 20
time (h)

0

5

10

15

20

po
we

r (
kW

)

f1, t
f2, t
pt

pst

Figure 4.3: Average customer behavior and influence on the root node when using flat rate
pricing.
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This is shown in Figure 4.3. We are able to identify three periods. First, The demand is sat-
isfied using only downwards flow until 8am. At this moment solar supply starts to appear,
resulting in a lower average flow for both nodes and is due to the fact that both customers
will automatically send power to the leaf node if their net demand is negative. This results
in power shedding at the root node as no battery can be installed there. Finally, at 3pm as PV
power production of both systems start to decrease and their demand starts to increase, the
leaf nodes augment their downwards flow inducing high power production at the leaf nodes.

Some conclusions can thus be made regarding the behavior of customers reacting to flat
rate pricing. First of all, batteries are not used and have thus been unnecessarily installed.
Secondly, we see that for LV networks situated at small distances from each other, excess
PV power output will be sent simultaneously to the grid. Finally, because of this behavior,
demand at the start and end of the day will never be satisfied by eventual stored energy
thus resulting in high simultaneous power withdrawal from transmission lines.

4.4.2 Time of use

Again, the optimal decisions can be easily deduced. As the price is lower during off peak
hours it is more interesting to use electricity generated during that period. The customer
will thus try to fill his battery throughout the morning before the peak period starts, then
use this electricity during the day and sell the excess battery energy before the peak period
starts. This means he will be able to use as much cheap energy as possible throughout the
day. The battery profile of Figure 4.4 illustrates this, we clearly see that for both leaf nodes
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Figure 4.4: Average stored energy for both leaf nodes when using time of use pricing.

the battery is charged before the peak period and discharged during the peak period. The
battery is nearly never discharged before 6 pm and the stored energy is thus always used to
reduce the peak demand at that moment. This also implies that excess PV output will result
in a negative flow leaving the leaf nodes as the batteries are both full. This can be seen in
Figure 4.5 where power shedding appears only during the peak PV power output hours.
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Figure 4.5: Average customer behavior and the influence on the root node when using time
of use pricing.

With some reasoning it is possible to come up with a similar solution which will not change
the payment of the customers and highly reduce the root node cost. Instead of charging and
discharging the battery during only one time step it could be done throughout the entire
period. We illustrate this using Figure 4.6. Knowing that the battery is always filled at 6am
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Figure 4.6: Comparison of the maximal and minimal flow going to the leaf node with
maximal and minimal net demand for time of use pricing.

it is indeed possible to charge it equally from midnight until 6am thus reducing the peak
downwards flow during that period. The same could also be done during the peak period of
the day. Instead of entirely discharging the battery at 6 pm one could do this over the entire
peak period again smoothing the demand over that period without changing the payment
of the leaf nodes.
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However, this does not change the fact that leaf nodes will never store excess PV power
supply which can be explained by two facts. First of all, BESS efficiency losses reduce the
energy quantity that can be sold. And secondly, the fact that the sell price is higher during
the peak period.

A few conclusions can be drawn from the optimal behavior of customers when using time of
use pricing. First of all, we see that the installed battery will only be used by the customer
to store cheap energy in the battery. This energy mainly comes from complementary power
withdrawn from transmission lines and minor excess PV power. Also, if more BESS capacity
had been installed we would have seen that the battery would be used to reduce the pay-
ment of the customer. It would be filled during off peak hours and excess energy would be
sold during peak hours thus reducing the customer’s bill. Secondly, excess PV power will
never be stored and always lead to upwards flow during the peak hours inducing simulta-
neous upward flow for geographically adjacent leaf nodes thus enhancing the risk of power
shedding. Finally, time of use pricing will have the benefit of reducing overall loads during
peak hours as the customers will prioritize discharging his battery to buying downwards
flow from the root node.

4.4.3 Network influence

Let us first ask ourselves what a good pricing method is and what influence it should have
on the flows going through the network. First of all, it should avoid congestion of the lines.
As explained before we have reduced the line capacity and replaced it by battery capacity
in order to reduce investment costs. This means that we might have a lot of congestion as
the DSO does not choose what flow the leaf node will withdraw/inject. Next, we should
have a look at the average production cost which tells us what the total cost of the system
will be. Finally, one should pay attention to the consumer payment. This value represents
how much the consumer will pay in average over one day if he follows the decisions of the
optimization problem.

This analysis has been summarized in Table 4.4. Flat rate pricing has smaller average pro-
duction cost and identical power shedding compared to time of use pricing. This is due to
the behavior of the customer. Indeed, the behavior of time of use pricing customers makes
it more likely for both nodes to buy electricity simultaneously because the battery is always
charged during the first 6 hours of the day thus increasing simultaneous production. The
production cost will however be smaller when the production is smooth over the consid-
ered horizon. This is due to the quadratic nature of function TC and thus explains why
flat rate pricing has smaller production cost. The upwards flow of both nodes will behave
similarly due to the efficiency losses of the BESS thus canceling out the benefit of being able
to compensate the demand of one node with the renewable production of the other. This is
why equal power shedding can be observed for both cases. Finally, the two pricing methods
behave really bad when looking at the congestion percentage. However we see that the
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required capacity for both methods in order to remove congestion is not that far away from
the values we computed for the design of the network.

Feature Flat rate Time of use
Leaf nodes

Average payment of node 1 21.28 € 19.50 €
Average payment of node 2 27.79 € 25.94 €

Root node
Average power shedding 8.48 kW 8.48 kW

Average power consumption 192.12 kWh 197.95 kWh
Average production cost 11.10 € 12.12 €

Lines
Congestion % node 1 25.00 % 25.00 %
Congestion % node 2 25.00 % 25.01 %

F for 90 % prob. of uncongested line node 1 8.77 kW 8.77 kW
F for 90 % prob. of uncongested line node 2 9.94 kW 12.68 kW
F for 95 % prob. of uncongested line node 1 9.32 kW 9.23 kW
F for 95 % prob. of uncongested line node 2 12.68 kW 13.34 kW

F for 100 % prob. of uncongested line node 1 9.32 kW 9.33 kW
F for 100 % prob. of uncongested line node 2 12.68 kW 13.50 kW

Table 4.4: Network influence comparison between flat rate pricing and time of use pricing.

4.5 Alternatives

We have seen that flat rate pricing and time of use pricing are not optimized for the designed
network, this is why it becomes interesting to start looking at alternative pricing methods.
We will consider Real Time (RT) pricing and compare it with the Perfect Foresight (PF)
policy. Real time pricing assigns a price for each possible scenario of the scenario tree.
Comparing this pricing method with a perfect foresight model allows us to understand what
the value of knowing the PV power output in advance represents for the problem.

4.5.1 Real time pricing and perfect foresight

The cost for the consumer for one time step in one scenario is

Pc =∆E
w[t]
t ·λw[t]

t ,

where ∆E and λ are time and scenario dependent. Real time pricing is in reality really
difficult to apply as the customer has to be able to understand how he will be charged for
consuming energy. This is quite contradictory with the concept of real time pricing. Giving
him a price dependent on each scenario makes it way more complicated for him to plan his
consumption.
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4.5.2 Optimization problem

From an optimization point of view it comes that the distribution system interaction between
customer and retailer can be seen as a competitive market. The optimal scenario prices and
network flow decisions are thus obtained by considering the collaboration of both leaf nodes
and the root node. It is thus sufficient to solve an adapted version of the economic dispatch
problem presented in Section 1.2.2. The nodal interface prices will then be obtained using
the dual multipliers of their respective power flow constraints.

Model 7: Optimal real time system decisions.

minimize
x , f , bc, bd, p

∑

t∈T

∑

w[t]∈Ω[t]

P
�

w[t]
�

∆t
�

TC
�

p
w[t]
t

�

+
∑

l∈L

VOLL ls
w[t]
l,t

�

subject to x
w[t]
l,t +∆t

bd
a(w[t])
l,t−1

µ
= x

a(w[t])
l,t−1 +∆tηbc

a(w[t])
l,t−1 , l ∈ L, t ∈ T \ {0} , w[t] ∈ Ω[t],

∆t
bd

w[H]
l,H

µ
= x

w[H]
l,H +∆tηbc

w[H]
l,H , l ∈ L, w[H] ∈ Ω[H],

0= x
w[0]
l,0 , l ∈ L, w[0] ∈ Ω[0],

0≤ bc
w[t]
l,t , l ∈ L, t ∈ T, w[t] ∈ Ω[t],
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w[t]
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0≤ x
w[t]
l,t , l ∈ L, t ∈ T, w[t] ∈ Ω[t],

bc
w[t]
l,t ≤ Rl , l ∈ L, t ∈ T, w[t] ∈ Ω[t],

bd
w[t]
l,t ≤ Rl , l ∈ L, t ∈ T, w[t] ∈ Ω[t],

x
w[t]
l,t ≤ Cl , l ∈ L, t ∈ T, w[t] ∈ Ω[t],

Dl,t + bc
w[t]
l,t + ps

w[t]
l,t = f

w[t]
l,t + bd

w[t]
l,t + SyslRP

w[t]
t , l ∈ L, t ∈ T, w[t] ∈ Ω[t],

∑

l∈L

f
w[t]

l,t = p
w[t]
t , t ∈ T, w[t] ∈ Ω[t],

−Fl ≤ f
w[t]

l,t , l ∈ L, t ∈ T, w[t] ∈ Ω[t],

f
w[t]

l,t ≤ Fl , l ∈ L, t ∈ T, w[t] ∈ Ω[t]

This model is very similar to the Model 5, one can note that the objective has changed
and that the constraints have been adapted to a scenario tree representation of uncertainty.
We indeed consider a stochastic framework similarly as in the previous model. Also, as
the design decisions have been made in Chapter 3 the variables related these decisions have
now been considered as parameters of the problem. The perfect foresight model that will be
compared with this model is very similar to Model 7. The only difference is the fact that we

46



optimize over a set of scenarios instead of the complete scenario tree. This model is convex
and can, as stated previously, be solved with standard solvers. We have the guarantee that
every local optimal solution will be a global optimal solution.

4.6 Results

Both the real time pricing model and the perfect foresight model have been tested using
the test case from 4.3 and the same computer as in Chapter 3. Again, this has been imple-
mented using programming language AMPL using the Gurobi solver with the default barrier
algorithm. The computation times are given in Table 4.5.

Time Real time Perfect foresight

_ampl_time 17.55 s 20.03 s

_solve_time 154.52 s 235.29 s

Table 4.5: Computation times for solving Model 7 with the test case of Section 4.3.

4.6.1 Behavior: real time vs. perfect foresight

Let us first have a look at Figure 4.7. We see that the average storage profiles of both
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Figure 4.7: Average battery storage comparison between perfect foresight and real time
pricing.
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nodes for both batteries are very similar. They are also analogous to the the storage pro-
files presented in Figure 3.5. This was predictable as the daily production cost of Model 5
corresponds to the objective of the considered perfect foresight model. Again, two charging
periods can be identified corresponding to an anticipation of higher demand in future time
stages. A small difference in average battery level at the start of the horizon can however
be observed depending on the model used. This is due to the fact that the perfect foresight
model exactly knows what the future PV output power will be which is not the case for the
real time pricing model.
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Figure 4.8: Comparison of the maximal and minimal flow going to the leaf node with
maximal and minimal net demand.

This is illustrated in Figure 4.8 where it can easily be seen that bigger fluctuations in flow
exist at the start of the horizon for the perfect foresight model compared to the real time
pricing model. The maximal flow of the real time pricing model is therefore higher during
subsequent time steps. Whereas the minimal flow of the perfect foresight model is lower
during subsequent time steps due to planned exchange between leaf nodes in some sampled
scenarios.
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Figure 4.9: Average customer behavior and the influence on the root node when using real
time pricing compared to perfect foresight.

The withdrawn power from the transmission lines can be observed in Figure 4.9. The battery
is thus used to store excess PV supply and in order to cope with higher demand throughout
the day. This will have the benefit of reducing peak loads and thus reduce costs because of
the quadratic shape of the production cost function.

4.6.2 Price

We are able to get the average optimal interface price using the dual variables of the optimal
solution of Model 7 as shown in Figure 4.10. We see that both models behave very similarly
in terms of average interface price. It is first important to note that the interface price is the
same for all nodes in both models thus explaining why only one graph is shown.

0 5 10 15 20
time (h)

0.075

0.100

0.125

0.150

0.175

0.200

0.225

pr
ice

 (€
/k
W
h)

λt RT
λt PF

Figure 4.10: Average interface price for perfect foresight and real time pricing.

Four periods can be identified. At the start of the horizon we see that the price is low in order
to allow both nodes to charge their batteries for the upcoming demand. Then, the battery is
in average discharged at 6 am in both nodes explaining why a price spike can be observed.
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The interface price then decreases to encourage both nodes to store energy in their batteries
in order to anticipate higher demand. Finally, a high interface price is chosen to induce both
nodes to use their batteries and sell excess PV power if available. The high price at the end
of the horizon is also explained by the fact that the battery cannot be filled more before the
evening as shown in Figure 4.7 thus implying that more power has to be produced during
the last time stages. This results in a higher marginal cost of power production at the end
of the horizon due to the quadratic nature of the production cost function.

4.6.3 Network

From a network point of view Table 4.6 shows that real time pricing behaves better com-
pared to the previously considered pricing methods. This could be expected as the system
has been designed specifically from a system point of view thus favoring the real time pric-
ing results.Whether it is in terms of production cost, leaf node payment, average power
shedding or congestion of the lines we see that this method works better than the other two
methods.

Feature Flat rate Time of use Real time Perfect foresight
Leaf nodes

Average payment of node 1 21.28 € 19.50 € 15.28 € 14.91 €
Average payment of node 2 27.79 € 25.94 € 17.92 € 17.40 €

Root node
Average power shedding 8.48 kWh 8.49 kWh 0 kW 0 kW

Average power consumption 192.12 kWh 197.95 kWh 190.28 kWh 190.24 kWh
Average production cost 11.10 € 12.12 € 8.30 € 8.08 €

Lines
Congestion % node 1 25.00 % 25.00 % 0 % 0 %
Congestion % node 2 25.00 % 25.01 % 0 % 0 %

F for 90 % prob. of uncongested line node 1 8.77 kW 8.77 kW 7.15 kW 7.15 kW
F for 90 % prob. of uncongested line node 2 9.94 kW 12.68 kW 7.82 kW 7.81 kW
F for 95 % prob. of uncongested line node 1 9.32 kW 9.23 kW 7.29 kW 7.26 kW
F for 95 % prob. of uncongested line node 2 12.68 kW 13.34 kW 7.86 kW 7.84 kW

F for 100 % prob. of uncongested line node 1 9.32 kW 9.33 kW 7.53 kW 7.30 kW
F for 100 % prob. of uncongested line node 2 12.68 kW 13.50 kW 8.10 kW 7.85 kW

Table 4.6: Network influence comparison between all pricing methods.

Next, we see that the network performance of real time is not far away from perfect foresight.
A slight difference in leaf node payment and production cost can be observed, as explained
before. This is because perfect foresight has exact knowledge about the upcoming PV power
output allowing the model to smooth the power produced over the horizon, slightly decreas-
ing the objective function. The system has also been over designed for perfect foresight as
the line capacities are never reached. This is due to the fact that we went from a 15 minute
interval to a 2 hour interval between time steps reducing the chance of having power spikes.
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From an ecological point of view, we finally see that real time pricing never sheds power
and needs less power to satisfy the demand compared to flat rate and time of use pricing.
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Conclusion

An economical study of distribution systems is presented in this thesis.

At first, a typical distribution system is studied and a way of generating typical distribu-
tion system instances is proposed.

Then, a new framework for designing and analyzing distribution systems is presented. A
multi-stage stochastic program is deduced from the considered framework and solved using
typical distribution system data. Finally, the consequences of the customer’s reaction are
studied for three different retail pricing methods.

We have answered the following three questions that where addressed in the introduction.

1. How should a low voltage sub network be optimally designed in order to maxi-
mize the power system welfare?

From a system welfare maximization point of view battery capacity should be pri-
oritized to line capacity. As shown in Chapter 3 battery capacity can be used to reduce
the need for expensive lines. However, reducing line capacity increases the risk of
congesting the distribution lines. A trade off has thus to be made between both tech-
nologies. One also has to keep in mind that no battery capacity can be installed by the
DSO of the system meaning that BESS’s will have to be installed in households. This
allows customers to control their interaction with the grid at their own will enabling
them to minimize their monthly payment at the expense of system welfare maximiza-
tion.

2. How will distribution system customers equipped with a PV system and a BESS
react to different retail pricing options?

The behavior of consumers is studied for three retail pricing options. It will be very
similar when flat rate and time of use pricing are applied. It can be concluded that in
both cases the low voltage clusters will send all excess PV power to the root node. One
difference remains in the fact that for time of use pricing consumers will fully charge
their battery in order for them to discharge it during the day. This is not the case for flat
rate pricing where the battery will never be used by the customers. These deductions
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show that for these two pricing methods the battery will never be used to store excess
PV power contradicting the initial purpose of installing a battery. For real time pric-
ing however a general trend can be observed with respect to BESS management; The
battery of each leaf node is filled using excess PV output and complementary power
coming from transmission lines as a provision for high demand periods in order to
smooth the power demand coming from transmission lines and avoid congestion.

3. What are the consequences from a network point of view of high RES penetra-
tion at consumer level?

If high PV power penetration on the grid is considered we have shown that exces-
sive power shedding might represent a dangerous consequence if traditional retail
tariff methods are still applied. Indeed as LV sub networks connected to the same
feeder are always situated in the same area this will induce that on sunny days all LV
networks will simultaneously send all their excess PV power resulting in high power
shedding. This issue can however be bypassed by using real time pricing. Real time
pricing has often been referred to the future of retail pricing in distribution systems
but is still very difficult to implement in practice. We have seen that real time pricing
behaves better both from an system welfare and ecological point of views.

Future directions

Many improvements can be made in order to enhance the results of this Master thesis. First
of all, as stated before we have made the assumption that leaf nodes represent aggregates of
consumers. In reality this is not the case and implies that in Chapter 3 approximations have
to be made regarding the line capacity investment cost connecting the leaf nodes with the
root node. A more developed model could have been made by removing the leaf node ag-
gregate assumption which would allow us to study more in depth the interactions between
individual consumers. Having made linear assumptions about the power flow constraints
this would also allow more detailed power flow equations to be considered. However, the
computation time would highly suffer from these improvements.

Next, the assumption has been made that the PV panels of both leaf nodes output the same
amount of power. However, this is not the case in reality. The output of these PV panels
should indeed be highly correlated but not equal to each other. This could be coupled with
the addition of considering more leaf nodes connected to the root node. Adding these fea-
tures to the model would give us more realistic results but would highly increase solve times
as this increases the size of the considered scenario tree. Indeed, one node of the scenario
tree would have to be created for each possible combination of PV output of all leaf nodes.

A totally different approach based on bilevel programming would also be an alternative
to consider. The leader would then be the retailer deciding the optimal retail prices and
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design of the LV sub networks. The customer would therefore be the follower trying to min-
imize his payment. This could then be combined with a demand response model describing
the customer behavior in a more detailed way.

Finally, in Chapter 4 more time steps should be considered in order to get a more detailed
description of the behavior of customers. We have used 12 time steps which means a deci-
sion is made every 2 hours which is not representative of reality. Increasing this parameter
would however force us to use methods such as Stochastic Dual Programming [26] and
Model Predictive Control [27] which have already proven their effectiveness on many sim-
ilar applications.
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Appendix A

Generation of realistic distribution
system instances

A.1 Voltage level clustering algorithm

Algorithm 1: Voltage Level Clustering.
Input : T : set of buses connected to at least one transformer, B : set of all buses,

n : B→ A⊆ B: function that returns all the neighbors of the input bus,
i : T → R+: function that returns the voltage of the transformer bus.

Output: C : set of clusters that contain buses of a certain voltage level, vi : voltage
of cluster ci.

while T 6= ; do
Choose t in T ;
T ← T \ {t};
N1← n(t);
ci ← {t};
vi ← i(t);
while N1 6= ; do

N2← ;;
for p ∈ N1 do

ci = ci ∪
�

p
	

;
if n ∈ T then

T ← T \
�

p
	

;
end

N2← N2 ∪
�

n(p) \
�

N1 ∪ ci

�

�

;

end
N1← N2;

end
C ← C ∪

�

ci

	

;
end
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A.2 Prim’s minimum spanning tree algorithm

Algorithm 2 gives us the minimum spanning tree of graph (V, E) in O (|V |2) time [19]. The
maximum spanning tree can also easily be obtained using the same algorithm. It suffices to
apply the algorithm on the same graph with negated weights.

Algorithm 2: Prim’s minimum spanning tree algorithm.
Input : V : set of vertices, E : set of edges, w : E→ R: weight associated to each

edge (vi, v j) ∈ E.
Output: Minimum weight spanning tree of (V, E).
U ←

�

v1

	

;
T ← ;;
for v ∈ V \

�

v1

	

do
closestv ← v1;

end
while U 6= V do

for v ∈ V \ U do
if w(v, closestv)<min then

min← w(v, closestv);
next← v;

end
end
U ← U ∪ {next};
T ← T ∪

�

(next, closestnext)
	

;
for v ∈ V \ U do

if w(v, closestv)> w(v, next) then
closestv ← next;

end
end

end
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A.3 Low voltage templates
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(d) 18 node template LV cluster

Figure A.1: Low voltage clusters.
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Appendix B

Design of distribution systems: a new
framework

B.1 Optimization model nomenclature

Data

• T = {0, . . . , H} : Set of considered time stages.

• ∆t : Interval between two time steps.

• Ω[t] : Set of scenarios at time stage t.

• S ⊆ Ω[H] : Subset of scenarios sampled randomly.

• L = {1, 2} : Set of leaf nodes.

• Dl,t : Demand of node n at time step t.

• RPs
t : Renewable power production of one PV system in sampled scenario s of time

step t.

• Sysl : Number of PV systems in leaf node l.

• I =
�

line capacity, battery energy capacity, battery charge/discharge rate
	

: Set of in-
frastructures.

• TC
�

ps
t

�

: R+→ R+ : Hourly total production cost.

• VOLL Hourly value of lost loads.

• ICi Investment cost of the creation of a distribution network of a certain capacity in
node n.

• LTi: Lifetime of component i.
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• µ : Battery discharging efficiency.

• η : Battery charging efficiency.

• κ : C-rate of the battery.

• r : Discount rate.

Variables

• x s
l,t ∈ R : Energy stored in node l in sampled scenario s at time step t.

• f s
l,t ∈ R : Power sent/received by node 3 to/from node l in sampled scenario s at time

step t.

• bcs
l,t ∈ R : Power added in the battery of node l in sampled scenario s at time step t.

• bd s
l,t ∈ R : Power extracted from the battery in node l in sampled scenario s at time

step t.

• ps
t ∈ R : Power withdrawn from transmission lines in sampled scenario s at time step

t.

• pss
l,t ∈ R : Excess power shed in sampled scenario s at time step t at node l.

• lss
l,t ∈ R : Excess load shed in sampled scenario s at time step t at node l.

• Rl : Maximal charge/discharge rate of the battery in leaf node l.

• Cl : Maximal capacity of the battery in leaf node l.

• Fl : Maximal power sent/received to/from leaf node l.
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Appendix C

Influence of retail pricing on customers
and network congestion

C.1 Test case
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Figure C.1: Demand profiles of the leaf nodes in the experimental setup.
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Figure C.2: Lattice nodes generated for
the lattice model.
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Figure C.3: Set of 5000 samples gener-
ated by the scenario generator using the
lattice model.
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