Adaptive Partitioning for **Chance-Constrained Problems** with Finite Support

Alexandre Forel, Marius Roland, Thibaut Vidal

DS4DM Coffee Talks 5/12/2023

Introduction

Chance-Constrained Stochastic Programs (CCSPs)

Some Applications of CCSPs

Energy [Porras et al., 2023]:

$\mathbb{P}(\text{network stability}) \geq 1 - \tau$

Vehicle Routing [Errico et al., 2018]:

 $\mathbb{P}(\text{successful delivery}) \geq 1 - \tau$

Finance [Cattaruzza et al., 2023]:

$$
\mathbb{P}(\text{achieve desired return}) \ge 1 - \tau
$$

CCSP with Finite Support

Assume

$$
\xi \in \{\xi^s \in \mathbb{R}^d : s \in S\}
$$

New Parameters & Variables

 $p_s \in [0,1], X^s = X(\xi^s)$ $z_s \in \{0, 1\}$

Model

$$
v^* = \min_{x \in \mathcal{X}} f(x)
$$

s.t. $\mathbb{P}_{\xi}[x \in X(\xi)] \ge 1 - \tau$

$$
\sum_{s \in S} p_s z_s \ge 1 - \tau
$$

$$
z_s \in \{0, 1\}, \quad s \in S
$$

5

Let's Construct a Feasible Set

Model X-Space

$$
\min_{x \in \mathbb{R}^n} c^{\top} x
$$
\n
$$
\text{s.t.} \quad z_s = \mathbb{1}(A^s x \ge b^s), \quad s \in \{1, 2, 3\}
$$
\n
$$
\sum_{s \in \{1, 2, 3\}} z_s \ge 2
$$
\n
$$
z_s \in \{0, 1\}
$$

Nonconvex region & $\binom{|S|}{|\tau|S||}$ Operations

 c^{\perp}

Related Literature

- Mixing Inequalities: [Kücükyavuz 2012, Luedtke, 2014, Abdi & Fukasawa, 2016]
- Quantile Cuts: [Qiu et al., 2014, Xie & Ahmed 2018]

- Big-M Tightening: [Qiu et al. 2014, Song et al. 2014, Porras et al. 2023]
- Relaxations: [Ahmed et al. 2017]

- Adaptive Partitioning Method: [Song et al. 2015, Espinoza et al. 2014] $\overline{}$ ₇

Our Approach - Partitioned CCSP (P-CCSP)

Scenarios Partitions

 $S = \{1, 2, 3, 4, 5\}$

Model [Ahmed et al., 2018]

$$
v^* = \min_{x \in \mathcal{X}} f(x)
$$

s.t. $z_s = \mathbb{1}(x \in X^s), \quad s \in S$

$$
\sum_{s \in S} p_s z_s \ge 1 - \tau
$$

$$
z_s \in \{0, 1\}, \quad s \in S
$$

 $v^{\mathcal{L}}(P) = \min_{x \in \mathcal{X}} f(x)$ s.t. $z_p = \mathbb{1}(x \in X^p), \quad p \in P$ $\sum p_p z_p \geq 1 - \varepsilon$ $p \in P$ $z_p \in \{0,1\}, \quad p \in P$

 $P = \{\{1,4\},\{2,3,5\}\}\$

⁸ Same constraints but **less variables**

Adaptive Partitioning I

Terminates finitely with the **optimal** solution if $|P^{j+1}| > |P^j|$

Modification by Refinement

Partition **Refinement**

 $P = \{\{1,4\},\{2,3,5\}\}\$ $R = \{\{1,4\},\{2,5\},\{3\}\}\$

Proposition. Model (P-CCSP) with P is a **relaxation** of Model (P-CCSP) with R , i.e.,

 $v^* \geq v^L(R) \geq v^L(P).$

Adaptive Partitioning II

 \blacktriangleright Create R so that \underline{x} is not feasible for (P-CCSP) with R

What can we prove?

Theorem. If the optimal solution \underline{x} of (P-CCSP) with P is **unique**, then we can create R_{\cdot} of **minimal size** such that

 $v^{\rm L}(R) > v^{\rm L}(P).$

- The size of R grows in each iteration \cap
- Instead, can we create a merger M of P with the same ideas?

Impossible, P is a refinement of M. So, $v^L(P) \geq v^L(M)$ (

Theorem. If the optimal solution \underline{x} of (P-CCSP) with P is **unique**, then we can create M such that $|P| = |M|$ and

 $v^{\rm L}(M) > v^{\rm L}(P).$

Additions

- How to **project** \underline{x} in the feasible space of CCSP?

- How to **refine** in practice?

- How to **merge** in practice?

- How to create first P such that $v^L(P)$ is tight?

Addition: Strong Partitions

Proposition [Ahmed et al., 2018]. The **quantile bound** is a lower bound on the optimal objective of the CCSP, i.e.,

$$
v^* \geq v_{\mathbf{Q}}
$$

$$
\longrightarrow
$$
 We can create P such that

$$
v^* \ge v^{\mathcal{L}}(P) \ge v_{\mathcal{Q}}
$$

Numerical Results

- Instances: Perturbed Multidimensional Knapsack [Song et al., 2014]
	- \longrightarrow MIP with Big-M Constraints
		- Average over 5 Instances
- Variables: Continuous & Binary
- Time: 1 hour
- Benchmark/Comparison:
	- \longrightarrow [Song et al., 2014]

Numerical Results: Continuous Variables

Numerical Results: mk-20-10, 0.2, 1000, continuous

Numerical Results: Binary Variables

Conclusion

- We consider generic CCSPs with finite support

- A new method based on scenario reduction

Results are promising, especially when $|S|$ is large $\overline{}$

- → Combining Scenario Reduction & Optimization is promising!
- Soon preprint available on <u>mariusroland.gitlab.io</u>