Adaptive Partitioning for Chance-Constrained Problems with Finite Support

Alexandre Forel, Marius Roland, Thibaut Vidal

DS4DM Coffee Talks 5/12/2023

Introduction

Chance-Constrained Stochastic Programs (CCSPs)

Some Applications of CCSPs

Energy [Porras et al., 2023]:

$\mathbb{P}(\text{network stability}) \ge 1 - \tau$

Vehicle Routing [Errico et al., 2018]:

 $\mathbb{P}(\text{successful delivery}) \ge 1 - \tau$

Finance [Cattaruzza et al., 2023]:

$$\mathbb{P}(\text{achieve desired return}) \geq 1 - \tau$$

CCSP with Finite Support

Assume

$$\boldsymbol{\xi} \in \{\boldsymbol{\xi}^s \in \mathbb{R}^d : s \in S\}$$

New Parameters & Variables

 $p_s \in [0,1], \ X^s = X(\boldsymbol{\xi}^s)$ $z_s \in \{0,1\}$

Model

$$v^* = \min_{x \in \mathcal{X}} f(x)$$

s.t.
$$\mathbb{P}_{\boldsymbol{\xi}}[x \in X(\boldsymbol{\xi})] \ge 1 - \tau$$

$$v^* = \min_{x \in \mathcal{X}} f(x)$$

s.t.
$$z_s = \mathbb{1}(x \in X^s), \quad s \in S$$

$$\sum_{s \in S} p_s z_s \ge 1 - \tau$$

$$z_s \in \{0, 1\}, \quad s \in S$$

6

 c^+

Related Literature

- Mixing Inequalities: [Kücükyavuz 2012, Luedtke, 2014, Abdi & Fukasawa, 2016]
- Quantile Cuts: [Qiu et al., 2014, Xie & Ahmed 2018]

- Big-M Tightening: [Qiu et al. 2014, Song et al. 2014, Porras et al. 2023]
- Relaxations: [Ahmed et al. 2017]
- Adaptive Partitioning Method: [Song et al. 2015, Espinoza et al. 2014]

Our Approach - Partitioned CCSP (P-CCSP)

<u>Scenarios</u>

 $S = \{1, 2, 3, 4, 5\}$

Model [Ahmed et al., 2018]

$$v^* = \min_{x \in \mathcal{X}} f(x)$$

s.t. $z_s = \mathbb{1}(x \in X^s), s \in S$
$$\sum_{s \in S} p_s z_s \ge 1 - \tau$$

 $z_s \in \{0, 1\}, s \in S$

 $v^{\mathrm{L}}(P) = \min_{x \in \mathcal{X}} \quad f(x)$ s.t. $z_p = \mathbb{1}(x \in X^p), \quad p \in P$ $\sum_{p \in P} p_p z_p \ge 1 - \varepsilon$ $z_p \in \{0, 1\}, \quad p \in P$

 $P = \{\{1, 4\}, \{2, 3, 5\}\}$

Partitions

Some constraints but less variables

Adaptive Partitioning I

Terminates finitely with the <code>optimal</code> solution if $|P^{j+1}|>|P^j|$

Modification by Refinement

Partition

Refinement

 $P = \{\{1,4\},\{2,3,5\}\}$ $R = \{\{1,4\},\{2,5\},\{3\}\}$

Proposition. Model (P-CCSP) with P is a $\ensuremath{\mathsf{relaxation}}$ of Model (P-CCSP) with R , i.e.,

 $v^* \ge v^L(\mathbf{R}) \ge v^L(\mathbf{P}).$

Adaptive Partitioning II

 \longrightarrow Create R so that x is not feasible for (P-CCSP) with R

What can we prove?

Theorem. If the optimal solution \underline{x} of (P-CCSP) with P is **unique**, then we can create R of **minimal size** such that

 $v^{\mathrm{L}}(R) > v^{\mathrm{L}}(P).$

- ightarrow The size of R grows in each iteration 😭
- Instead, can we create a merger M of P with the same ideas?

 \longrightarrow Impossible, P is a refinement of M. So, $v^{\mathrm{L}}(P) \geq v^{\mathrm{L}}(M)$ 😭

Theorem. If the optimal solution \underline{x} of (P-CCSP) with P is **unique**, then we can create M such that |P| = |M| and

 $v^{\mathrm{L}}(M) > v^{\mathrm{L}}(P).$

Additions

- How to **project** \underline{x} in the feasible space of CCSP?

- How to **refine** in practice?

- How to **merge** in practice?

- How to create first P such that $v^{L}(P)$ is tight?

Addition: Strong Partitions

Proposition [Ahmed et al., 2018]. The quantile bound $v_{\rm Q}$ is a lower bound on the optimal objective of the CCSP, i.e.,

$$v^* \ge v_{\rm Q}$$

$$\longrightarrow$$
 We can create P such that

$$v^* \ge v^{\mathrm{L}}(P) \ge v_{\mathrm{Q}}$$

Numerical Results

- Instances: Perturbed Multidimensional Knapsack [Song et al., 2014]
 - MIP with Big-M Constraints
 - Average over 5 Instances
- Variables: Continuous & Binary
- Time: 1 hour
- Benchmark/Comparison:
 - → [Song et al., 2014]

Numerical Results: Continuous Variables

			MI	LP_M	Adaptive P				
			Song Big-M	Belotti Big-M	$\mathbf{P}_{\mathbf{naive}}$		$\mathbf{P}_{\mathbf{final}}$		
Instance	au	S	T _{avg}	T _{avg}	T_{avg}	$\mathrm{It}_{\mathrm{avg}}$	T _{avg}	$\mathrm{It}_{\mathrm{avg}}$	
mk-20-10	0.1	500	1310.13s	0.26%(0)	0.95%(0)	30.0	0.24%(0)	46.0	
		1000	0.57%(0)	1.68%(0)	1.97%(0)	17.0	0.69%(0)	77.0	
		3000	1.64%(0)	6.01%(0)	3.10%(0)	13.0	1.16%(0)	189.0	
		5000	2.06%(0)	5.17%(0)	2.88%(0)	11.0	2.05%(0)	120.0	
	0.2	500	0.47%(0)	0.83%(0)	3.53%(0)	17.0	0.85%(0)	35.0	
		1000	1.56%(0)	3.64%(0)	7.07%(0)	14.0	1.52%(0)	58.0	
		3000	2.29%(0)	7.61%(0)	6.00%(0)	15.0	1.79%(0)	129.0	
		5000	3.06%(0)	8.26%(0)	4.27%(0)	10.0	1.96%(0)	276.0	
mk-40-30	0.1	500	1.46%(0)	5.50%(0)	2.68%(0)	11.0	2.97%(0)	58.0	
		1000	3.62%(0)	15.09%(0)	5.13%(0)	7.0	6.03%(0)	27.0	
		3000	-	24.57%(0)	12.16%(0)	3.0	7.22%(0)	11.0	
		5000	-	24.29%(0)	15.70%(0)	2.0	9.05%(0)	5.0	
	0.2	500	3.10%(0)	11.16%(0)	4.21%(0)	8.0	2.34%(0)	67.0	
		1000	6.89%(0)	22.54%(0)	13.45%(0)	5.0	8.31%(0)	98.0	
		3000	-	42.83%(0)	28.97%(0)	3.0	10.66%(0)	53.0	
		5000	-	43.05%(0)	33.34%(0)	2.0	12.38%(0)	18.0	

Numerical Results: mk-20-10, 0.2, 1000, continuous

Numerical Results: Binary Variables

			MI	Adaptive P				
			Song Big-M	Belotti Big-M	\mathbf{P}_{naive}		$\mathrm{P}_{\mathrm{final}}$	
Instance	au	S	$T_{\rm avg}$	T _{avg}	$T_{\rm avg}$	$\operatorname{It}_{\operatorname{avg}}$	T_{avg}	$\mathrm{It}_{\mathrm{avg}}$
mk-10-10	0.1	500	10.39s	$19.07\mathrm{s}$	21.70s	3.0	$6.25\mathrm{s}$	1.0
		1000	34.03s	$82.27\mathrm{s}$	132.77s	7.0	138.00s	7.0
		3000	231.59s	$263.36\mathrm{s}$	401.06s	5.0	$206.13 \mathrm{s}$	2.0
		5000	$606.85 \mathrm{s}$	$673.99 \mathrm{s}$	641.46s	6.0	$443.65 \mathrm{s}$	4.0
	0.2	500	$8.26\mathrm{s}$	12.15s	42.30s	6.0	$6.30 \mathrm{s}$	1.0
		1000	27.52s	$38.64\mathrm{s}$	64.53s	4.0	$13.74\mathrm{s}$	1.0
		3000	224.74s	$267.23\mathrm{s}$	297.38s	7.0	40.96s	1.0
		5000	612.86s	$477.06 \mathrm{s}$	640.08s	7.0	$56.08\mathrm{s}$	1.0

Conclusion

- We consider generic CCSPs with finite support

- A new method based on scenario reduction

- Results are promising, especially when $\left|S\right|$ is large

- ----> Combining Scenario Reduction & Optimization is promising!
- Soon preprint available on <u>mariusroland.gitlab.io</u>