Adaptive Nonlinear Optimization of District Heating Networks Based on Model and Discretization Hierarchies

Hannes Daenschel, Volker Mehrmann, <u>Marius Roland</u>, Martin Schmidt 05 November 2021, Energy Seminar - CORE

Trier University

"Heating and cooling in buildings and industry accounts for half of the EU's energy consumption."

- Use cleaner energy
- Distribute energy efficiently
- Store energy

 \Rightarrow District Heating Networks

Optimization

- Control (Benonysson et al. 1995; Krug et al. 2020; Sandou et al. 2005; Verrilli et al. 2017)
- Design (Ameri and Besharati 2016; Blommaert et al. 2018; Bracco et al. 2013; Guelpa et al. 2018; Mertz et al. 2017; Söderman 2007)
- Expansion (Bordin et al. 2016)

Challenges

- Nonlinear behaviour of fluids in pipes
- Mixing of water at pipe intersections
- Water flow directions
- Modeling accuracy
- Discretization accuracy

Assumptions

• One dimensional stationary model

Overview

Modeling

Problem Formulation

Network and Physics Modeling

Internal Energy Conservation Equation Hierarchies

Solutions to the ODE

Model and Discretization Hierarchies

Error Measures

Adaptive Optimization Algorithm

Explanation

Sets and finite termination

Numerical Results

Test Case

Results

min	Operation Cost			
s.t.	System physics			
	Consumer constraints			
	Depot constraints			

Network Modeling and Notation

We introduce the graph G = (V, A) such that

- $A_{\rm ff}, A_{\rm bf}, A_{\rm c}, a_{\rm d}$
- V_{ff}, V_{bf}

$$\begin{array}{c|c} u & 0 & L_a \\ \hline & & a = (u, v) \end{array}$$

One-dimensional stationary momentum equation for incompressible fluids in cylindrical pipes (Hauschild et al. 2020; Krug et al. 2020)

$$rac{p_{a}(L_{a})-p_{a}(0)}{L_{a}}=-g
ho h_{a}^{\prime}-\lambda_{a}rac{|v_{a}|v_{a}
ho}{2D_{a}}, \hspace{1em} a\in A_{\mathsf{pi}}$$

One-dimensional stationary internal energy conservation (Hauschild et al. 2020)

$$0 = v_a \frac{\mathrm{d}e_a}{\mathrm{d}x} - \frac{\lambda_a}{2D_a} \rho |v_a| v_a^2 + \frac{4U}{D_a} (T_a - T_{\mathrm{soil}}), \quad a \in A_{\mathrm{pi}}$$

State equations (ibid.)

$$\begin{split} \rho &= 997 \, \text{kg m}^{-3}, \\ \mathcal{T}_{a} &= \theta_{2}(e_{a})^{2} + \theta_{1} e_{a} + \theta_{0}, \end{split} \quad a \in A_{\text{pi}} \end{split}$$

Node Physics

$$\xrightarrow{L_a} 0 \xrightarrow{b \in \delta^{\text{out}}(u)} b$$

Mass flow continuity

$$\sum_{a\in \delta^{\mathsf{in}}(u)} q_a = \sum_{a\in \delta^{\mathsf{out}}(u)} q_a$$

Pressure continuity

$$p_u = p_a(0), \quad a \in \delta^{out}(u)$$

 $p_u = p_a(L_a), \quad a \in \delta^{in}(u)$

Internal energy mixing (Krug et al. 2020)

For
$$a_d = (u_d, v_d)$$

$$p_{u} = p_{s}$$

$$P_{\rho} = \frac{q_{a_{d}}}{\rho_{a_{d}}} \left(p_{a_{d}:v} - p_{a_{d}:u} \right)$$

$$P_{w} + P_{g} = \frac{q_{a_{d}}}{\rho_{a_{d}}} \left(e_{a_{d}:v} - e_{a_{d}:u} \right)$$

For
$$a = (u, v) \in A_c$$

$$P_a = \frac{q_a}{\rho_a} (e_{a:v} - e_{a:u})$$

$$e_{a:u} \ge e_a^{\text{ff}}$$

$$e_{a:v} = e^{\text{bf}}$$

$$p_v \le p_u$$

и 0 a = (u, v)La v

min
$$C_p P_p + C_w P_w + C_g P_g$$

min objective

stationary momentum equation s.t. stationary internal energy conservation mass conservation pressure continuity internal energy mixing equations depot constraints consumer constraints system bounds power bounds

Analytical Solution

If $T_{soil} \in [228,\infty)$, then the differential equation,

$$0 = v_a \frac{\mathrm{d}e_a}{\mathrm{d}x} - \frac{\lambda_a}{2D_a} \rho |v_a| v_a^2 + \frac{4U}{D_a} (T_a - T_{\mathrm{soil}}),$$

with initial condition

$$e_a(0)=e_a^0>0,$$

and state equation

$$T_a = \theta_2 (e_a)^2 + \theta_1 e_a + \theta_0,$$

has the solution

$$e_{a}(x) = \frac{\sqrt{\beta^{2} - 4\alpha\gamma}}{2\alpha} \frac{1 + \exp\left(\frac{x\sqrt{\beta^{2} - 4\alpha\gamma}}{\zeta}\right) \left(\frac{2\alpha e_{a}^{0} + \beta - \sqrt{\beta^{2} - 4\alpha\gamma}}{2\alpha e_{a}^{0} + \beta + \sqrt{\beta^{2} - 4\alpha\gamma}}\right)}{1 - \exp\left(\frac{x\sqrt{\beta^{2} - 4\alpha\gamma}}{\zeta}\right) \left(\frac{2\alpha e_{a}^{0} + \beta - \sqrt{\beta^{2} - 4\alpha\gamma}}{2\alpha e_{a}^{0} + \beta - \sqrt{\beta^{2} - 4\alpha\gamma}}\right)} - \frac{\beta}{2\alpha},$$

with

$$\begin{split} \alpha &:= -\frac{4U\theta_2}{D_a(\mathbf{e}_0)^2}, \quad \beta := -\frac{4U\theta_1}{D_a\mathbf{e}_0}, \quad \zeta := \mathbf{v}_a, \\ \gamma &:= \frac{\lambda_a}{2D_a}\rho|\mathbf{v}_a|\mathbf{v}_a^2 - \frac{4U}{D_a}(\theta_0 - T_{\mathsf{soil}}). \end{split}$$

$$0 = v_a \frac{\mathrm{d}e_a}{\mathrm{d}x} - \frac{\lambda_a}{2D_a} \rho |v_a| v_a^2 + \frac{4U}{D_a} (T_a - T_{\mathrm{soil}})$$

with state equation

$$T_a = \theta_2 (e_a)^2 + \theta_1 e_a + \theta_0$$

 \Downarrow

$$0 = v_a \left(\frac{e_a(x_k) - e_a(x_{k-1})}{\Delta x} \right) - \frac{\lambda_a \rho}{2D_a} |v_a| v_a^2 + \frac{4U}{D_a} \left(T_a(e_a(x_k), e_a(x_{k-1})) - T_{\mathsf{soil}} \right)$$

with state equation

$$T_{a}(e_{a}(x_{k}), e_{a}(x_{k-1})) := \frac{\theta_{2}}{4} \left(e_{a}(x_{k}) + e_{a}(x_{k-1})\right)^{2} + \frac{\theta_{1}}{2} \left(e_{a}(x_{k}) + e_{a}(x_{k-1})\right) + \theta_{0}(x_{k-1}) + \theta$$

min objective

stationary momentum equation s.t. discretized stationary internal energy conservation mass conservation pressure continuity internal energy mixing equations depot constraints consumer constraints system bounds power bounds

(NLP)

Iter	Phase	Ninf	Infeasibility	RGmax	NSB	Step	InItr	MX	ок
380		368	3.1815212151E+01	9.8E-01	73	8.6E-01	14		
381		366	3.1815207829E+01	2.6E-01	73	1.0E+00	16		
382		365	3.1815207347E+01	5.8E-01	74	1.0E+00			
383		365	3.1815207329E+01	2.9E-07	24	1.0E+00			
384		365	3.1815207329E+01	0.0E+00	334	0.0E+00			
385		365	3.1815207329E+01	0.0E+00	334	0.0E+00			
386		365	3.1815207329E+01	0.0E+00	334	0.0E+00			
387		365	3.1815207329E+01	0.0E+00	333	0.0E+00			
388		365	3.1815207329E+01	0.0E+00	333	0.0E+00			
389		365	3.1815207329E+01	0.0E+00	333	0.0E+00			
Iter	Phase	Ninf	Infeasibility	RGmax	NSB	Step	InItr	мх	ок
390		365	3.1815207329E+01	0.0E+00	88				

Issues

- Solver does not converge
- How detailed do we have to be?

Causes

- Incorrect discretization
- Model too detailed
- No error measure

Idea's

- Discretization hierarchies
- Model hierarchies
- Error measures
- Termination condition

Model Hierarchy

$$0 = v_a \frac{\mathrm{d}e_a}{\mathrm{d}x} - \frac{\lambda_a}{2D_a} \rho_a |v_a| v_a^2 + \frac{4U}{D_a} (T_a - T_{\mathrm{soil}}) \tag{M}_1$$

$$0 = v_a \frac{\mathrm{d}e_a}{\mathrm{d}x} - \frac{\lambda_a}{2D_a} \rho_a v_a^2 |v_a| + \frac{4U}{D_a} (T_a - T_{\mathrm{soil}}) \tag{M}_2$$

$$0 = v_a \frac{\mathrm{d}e_a}{\mathrm{d}x} + \frac{4U}{D_a} (T_a - T_{\mathrm{soil}}) \tag{M}_2$$

$$0 = v_a \frac{\mathrm{d}e_a}{\mathrm{d}x} + \frac{4U}{D_a} (T_a - T_{\mathrm{soil}}), \tag{M}_3$$

$$0 = v_a \frac{\mathrm{d}e_a}{\mathrm{d}x} \tag{M}_3$$

Error Measures

Exact solution

$e_a^{\ell_a}(\Gamma_0) := [e_a^{\ell_a}(x_1), \ldots, e_a^{\ell_a}(x_n)]^\top$

$$e_a^{\ell_a}(\Gamma_0;\Delta x_a) := [e_a^{\ell_a}(x_1;\Delta x_a),\ldots,e_a^{\ell_a}(x_n;\Delta x_a)]^\top$$

Exact total error

$$\nu_a(y) := \|e_a^1(\Gamma_0) - e_a^{\ell_a}(\Gamma_0; \Delta x_a)\|_{\infty}$$

Exact model error

Exact discretization error

 $\nu_a^{\mathsf{m}}(y) := \|e_a^1(\Gamma_0) - e_a^{\ell_a}(\Gamma_0)\|_{\infty} \qquad \qquad \nu_a^{\mathsf{d}}(y) := \|e_a^{\ell_a}(\Gamma_0) - e_a^{\ell_a}(\Gamma_0; \Delta x_a)\|_{\infty}$

Upper bound

$$\begin{split} \nu_{a}(y) &= \|e_{a}^{1}(\Gamma_{0}) - e_{a}^{\ell_{a}}(\Gamma_{0};\Delta x_{a}) + e_{a}^{\ell_{a}}(\Gamma_{0}) - e_{a}^{\ell_{a}}(\Gamma_{0})\|_{\infty} \\ &\leq \|e_{a}^{1}(\Gamma_{0}) - e_{a}^{\ell_{a}}(\Gamma_{0})\|_{\infty} + \|e_{a}^{\ell_{a}}(\Gamma_{0}) - e_{a}^{\ell_{a}}(\Gamma_{0};\Delta x_{a})\|_{\infty} \\ &= \nu_{a}^{\mathsf{m}}(y) + \nu_{a}^{\mathsf{d}}(y) \end{split}$$

Let $\varepsilon > 0$ be a given tolerance. We say that a solution y of problem (NLP) with discretized models M_{ℓ_a} , $\ell_a \in \{1, 2, 3\}$, and stepsizes Δx_a for the pipes $a \in A_{pi}$ is ε -feasible with respect to the reference problem if The solution y of the (NLP) is called ε -feasible if

$$\frac{1}{|A_{\mathsf{pi}}|}\sum_{a\in A_{\mathsf{pi}}}\nu_a(y)\leq \varepsilon.$$

Algorithm Pseudocode

Algorithm 1: Adaptive Model and Discretization Control

```
Input: Network (V, A), initial- and boundary conditions, error tolerance \varepsilon > 0. initial parameters
              \Theta_{\mathcal{R}}, \Theta_{\mathcal{U}}, \Theta_{\mathcal{C}}, \Theta_{\mathcal{D}} \in (0, 1), \ \tau^0 \leq 1, \ \mu^0 \in \mathbb{N}_+
    Output: \varepsilon-feasible solution v of (NLP)
 1 for a \in A_{ni} do
         initialize model level \ell_a^{0,0} and step size \Delta x_a^{0,0}
 2
 3 end
 4 for k = 0, 1, 2, ... do
         for i = 0, \ldots, \mu^k do
 5
              if k > 0 and i > 0 then
 6
                    compute sets \mathcal{U}^{k,j}, \mathcal{R}^{k,j} \subset A_{pi} and apply their respective changes
 7
              end
 8
              v^{k,j} \leftarrow \text{solve (NLP)}
 9
             if v^{k,j} is \varepsilon-feasible then return v^{k,j}.
10
         end
11
         compute sets \mathcal{D}^{k,j}, \mathcal{C}^{k,j} \subseteq A_{pi} and apply their respective changes
12
         v^{k,j} \leftarrow \text{solve (NLP)}
13
         if y^{k,j} is \varepsilon-feasible then return y^{k,j}
14
15 end
```

Model and Discretization Switching

We determine \mathcal{R} and \mathcal{U} by finding the **minimum** subset of pipes $a \in A_{pi}$ such that

$$\Theta_{\mathcal{R}} \sum_{a \in A_{\mathbf{pi}}} \nu_a^{\mathsf{d}}(y) \leq \sum_{a \in \mathcal{R}} \nu_a^{\mathsf{d}}(y)$$

and

$$\Theta_{\mathcal{U}} \sum_{a \in A_{\mathbf{pi}}^{>\varepsilon}} \left(\nu_a^{\mathsf{m}}(y; \ell_a) - \nu_a^{\mathsf{m}}(y; \ell_a^{\mathsf{new}}) \right) \leq \sum_{a \in \mathcal{U}} \left(\nu_a^{\mathsf{m}}(y; \ell_a) - \nu_a^{\mathsf{m}}(y; \ell_a^{\mathsf{new}}) \right)$$

We determine ${\mathcal C}$ and ${\mathcal D}$ find the maximum subset of all pipes $a\in A_{\mathsf{pi}}$ such that

$$\Theta_{\mathcal{C}} \sum_{a \in A_{\mathbf{pi}}} \nu_a^{\mathsf{d}}(y) \ge \sum_{a \in \mathcal{C}} \nu_a^{\mathsf{d}}(y)$$

and

$$\Theta_{\mathcal{D}} \sum_{a \in A_{\mathbf{p}i}^{\leq \varepsilon}} \left(\nu_{a}^{\mathsf{m}}(y; \ell_{a}^{\mathsf{new}}) - \nu_{a}^{\mathsf{m}}(y; \ell_{a}) \right) \geq \sum_{a \in \mathcal{D}} \left(\nu_{a}^{\mathsf{m}}(y; \ell_{a}^{\mathsf{new}}) - \nu_{a}^{\mathsf{m}}(y; \ell_{a}) \right)$$

Theorem (Finite Termination)

Suppose that $\nu_a^d \ll \nu_a^m$ for every $a \in A_{pi}$ and that every NLP is solved to local optimality. Then, Algorithm 1 terminates after a finite number of refinements, coarsenings and model switches with an ε -feasible solution with respect to the reference problem if there exist constants $C_1, C_2 > 0$ such that

$$\frac{1}{4}\Theta_{\mathcal{R}}\mu \geq \Theta_{\mathcal{C}} + C_{1}, \quad \Theta_{\mathcal{U}}\mu \geq \tau \Theta_{\mathcal{D}}|A_{\textit{pi}}| + C_{2},$$

hold.

Test Case: Network

Parameter	Value
ε	$10^{-6}\mathrm{GJ}$
$\Theta_{\mathcal{R}}$	0.7
$\Theta_{\mathcal{U}}$	0.4
$\Theta_{\mathcal{C}}$	0.6
$\Theta_{\mathcal{D}}$	0.01
au	1.1
μ	4

Cost	C_{w}	$C_{\rm g}$	C_{p}
Value (€/kWh)	0	0.0415	0.165

Intel(R) Core(TM) i7-8550U, 16 GB RAM. CONOPT4 using the Pyomo interface.

Error Measures

Computation Time

Conclusion

Contributions

- Model hierarchy for the internal energy conservation equation.
- Coupled with error measures
- Adaptive optimization algorithm

Results

- Prove finite termination under reasonable assumptions
- To ε -feasible solutions
- Solve problem instances not solvable before

Next steps

- Time dependent case
- Larger networks
- Other problems

mariusroland.gitlab.io