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Abstract

Energy transport networks are one of the most important infrastructures for the
planned energy transition. They form the interface between energy producers and
consumers and their features make them good candidates for the tools that mathe-
matical optimization can offer. Nevertheless, the operation of energy networks comes
with two major challenges. First, the nonconvexity of the equations that model
the physics in the network render the resulting problems extremely hard to solve
for large-scale networks. Second, the uncertainty associated to the behavior of the
different agents involved, the production of energy, and the consumption of energy
make the resulting problems hard to solve if a representative description of uncertainty
is to be considered.

In this cumulative dissertation we study adaptive refinement algorithms designed
to cope with the nonconvexity and stochasticity of equations arising in energy networks.
Adaptive refinement algorithms approximate the original problem by sequentially
refining the model of a simpler optimization problem. More specifically, in this thesis,
the focus of the adaptive algorithm is on adapting the discretization and description
of a set of constraints.

In the first part of this thesis, we propose a generalization of the different adaptive
refinement ideas that we study. We sequentially describe model catalogs, error
measures, marking strategies, and switching strategies that are used to set up the
adaptive refinement algorithm. Afterward, the effect of the adaptive refinement
algorithm on two energy network applications is studied. The first application treats
the stationary operation of district heating networks. Here, the strength of adaptive
refinement algorithms for approximating the ordinary differential equation that
describes the transport of energy is highlighted. We introduce the resulting nonlinear
problem, consider network expansion, and obtain realistic controls by applying the
adaptive refinement algorithm. The second application concerns quantile-constrained
optimization problems and highlights the ability of the adaptive refinement algorithm
to cope with large scenario sets via clustering. We introduce the resulting mixed-
integer linear problem, discuss generic solution techniques, make the link with the
generalized framework, and measure the impact of the proposed solution techniques.

The second part of this thesis assembles the papers that inspired the contents of
the first part of this thesis. Hence, they describe in detail the topics that are covered
and will be referenced throughout the first part.
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Part I

Extended Summary



1
Introduction

When considering optimization problems corresponding to real applications, it is
commonly accepted to use approximated representations of reality. Usually, these
approximations are obtained through simplifying assumptions about the process that
is considered. For instance, in the seminal papers by Markowitz and Manne (1957)
and Dantzig (1960) it was discussed how nonlinear functions could be replaced by
piecewise linear functions. Naturally, the authors made the simplifying assumption
that enough points were selected for the piecewise function to accurately mimic
the original function. Their aim was to consider an, in that time, easier to solve
mixed-integer linear optimization problem (MILP) instead of a nonlinear optimization
problem (NLP).

One issue that is often abstracted from in the literature is that solutions of the
approximated model are not necessarily feasible for the original model. Consequently,
the resulting solutions may not properly mimic the real process that is considered.
Moreover, realistic solutions can generally not be obtained by solving the original
model in reasonable computing times. This discrepancy highlights the usual trade-off
in application-driven optimization: the time requirement of many applications that
benefit from optimization limits the quality of the solution that can be obtained.

Energy transport networks constitute one of these applications. Interestingly, the
optimization of energy networks comes with two challenges that can be coped with
the use of simplified models. First, detailed descriptions of the physics that govern
such networks result in huge nonconvex and nonlinear optimization problems. With
the current state of the computational hardware and software, these problems cannot
be solved in reasonable times. For the case of electricity networks, this issue was
highlighted by Aravena et al. (2022) that summarize the approaches taken in the
first challenge of the ARPA-E Grid Optimization Competition1, a challenge aimed at
modernizing the state-of-the-art power grid optimization software. Much attention is

1See https://gocompetition.energy.gov/.
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1 Introduction

consequently pointed towards approximating the expressions that describe energy
transport. Catalogs of optimization models with a decreasing amount of nonlinear
terms exist for describing the network’s physics; see, e.g., Molzahn and Hiskens (2019)
for a detailed list of stationary optimal power flow approximations. Often, bounds on
the approximation accuracy of such simplified models exist. These upper bounds allow
to use simplified models while keeping the accuracy of the solution below a certain
threshold. Similarly, the dynamics of some energy networks such as gas networks
or district heating networks (DHNs) have to be described by partial differential
equations (PDEs); see, e.g., Domschke et al. (2021). The most intuitive way of
dealing with such constraints is to use discretization techniques that yield a large set
of constraints. For this approach, error measures exist that quantify the accuracy
that the discretization provides. This allows to use coarse discretizations that reduce
the size of the resulting optimization problem as long as the error measures are small.

Second, the behavior of the various agents in energy networks are not known in
advance. This motivates the use of probabilistic optimization models; see, e.g., Conejo
et al. (2010). In many cases, uncertainty is dealt with a representative selection
of scenarios that yield an optimization problem of smaller size. This selection of
scenarios is often obtained by clustering a larger set of scenarios. Depending on the
uncertainty that is studied, statistical error bounds exist to describe the accuracy of
the scenario-based approximation, once more, showing that simplified models may be
used to get realistic solutions to energy network optimization problems.

Due to the current energy turnaround, energy networks have become a popular
topic in optimization. Hence, this popularization motivated the development of opti-
mization techniques that exploit simplified models of energy transport and uncertainty
quantification. As discussed, the aim here is to bypass the associated challenges
and efficiently yield solutions of good quality. Nevertheless, the problem of accuracy
guarantees is usually not the primary focus in the literature and is the topic of this
dissertation. We study a technique that designs approximated optimization problems
with accuracy guarantees. More specifically, we examine an adaptive optimization
algorithm that yields realistic solutions to energy network applications.

Adaptive optimization algorithms, sometimes referred to as decomposition tech-
niques, are methods that iteratively switch between solving and improving the
approximation accuracy of a simplified optimization problem. Many groundbreaking
optimization methods can be described in this way. For instance, in the case of
mixed-integer linear programming, one can, e.g., think about cutting-plane algo-
rithms, see Wolsey (1998), and Benders decomposition, see Benders (1962) and Ge-
offrion (1972). The same holds for nonlinear programming where methods such as
outer approximation as described in Duran and Grossmann (1986) as well as Fletcher
and Leyffer (1994) follow the same adaptive structure.

In more detail, the focus of this dissertation is on adaptive refinement algo-
rithms (ARAs), a specific type of adaptive optimization algorithm that iteratively
improves the accuracy guarantee of the approximation model by refining the descrip-
tion and discretization of a set of constraints. Two branches of the optimization
literature are related to the topics considered in this thesis. The first branch is
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1.1 Adaptive Refinement for General Optimization

concerned with approximating a class of optimization problems by a “simpler” class of
optimization problem. Here, the simpler problems are inner or outer approximations
of the original problem and are obtained through the partitioning of the feasible set
of a variable. The second branch studies the approximation of ordinary differential
equations (ODEs) in optimization problems. Here, the ODEs are discretized to yield
optimization problems in closed form and the resulting discretization is adaptively
refined until realistic solutions of the original problem are obtained. In the following
two sections we review the literature of the two aforementioned branches with a
specific focus on energy network applications. We mention that this literature review
is not comprehensive and is designed to give an overview of the different research
directions linked to the topic of this thesis.

1.1 Adaptive Refinement for General Optimization

ARAs are part of the large set of optimization techniques concerned with solving
specific classes of optimization problems. Various authors in the field of mixed-
integer nonlinear programming (MINLP) propose adaptive algorithms that iteratively
refine outer approximations. Usually, the construction of outer approximations differ
based on the assumptions that are made about the MINLP that is considered; see,
e.g., Schmidt et al. (2019), Schmidt et al. (2022), Grübel et al. (2022), Lundell
et al. (2013), and Leyffer et al. (2008). A notable application related to this thesis
is the adaptive refinement of MILP outer approximations applied to the case of
gas networks discussed as in Geißler et al. (2012), Geißler et al. (2013), Burlacu
et al. (2020), Burlacu et al. (2019), and Aigner et al. (2020). Similarly, Gupte
et al. (2022) propose an adaptive refinement technique for inner approximations of
quadratically constrained quadratic problems. Goderbauer et al. (2016) and Koster
and Kuhnke (2019) apply the same ideas for linearizing bilinear terms in MINLPs
arising in design of decentralized energy supply systems and water usage and treatment
networks. Furthermore, adaptive refinement is a popular topic in the field of semi-
infinite programming. Here, most approaches are based on the founding works
of Blankenship and Falk (1976) that iteratively refine a discretization of the infinite-
dimensional domain. Finally, Berthold et al. (2022) applied a similar approach for
solving optimization problems with so-called probust constraints that arise, e.g., in
the case of gas transport problems.

1.2 Adaptive Refinement for Optimization with ODEs

We now focus on the literature related to the core topic of this thesis, i.e., ARAs for
optimization problems with ODEs. The motivation for adaptive refinement can be
traced back to the a-posteriori error estimates for finite element methods (FEMs)
presented in Babuška and Rheinboldt (1977). For the first time, the value of the
exact approximation error could be bounded from above by a sum of finite-element
cell contributions. This gave rise to two new branches of the FEM literature. The
first one introduced the concept of adaptive finite element methods (AFEMs) that
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1.2 Adaptive Refinement for Optimization with ODEs

sequentially solve a finite element discretization and refine the underlying grid until
the approximate solution is close enough to the exact solution; see, e.g., Bangerth
and Rannacher (2003) and Nochetto et al. (2009). The second branch corresponds
to the study and establishment of tight error estimates for finite element methods,
see, e.g., Verfürth (1994), Hintermüller and Hoppe (2008), and Leykekhman and
Vexler (2016). Moreover, a new error estimation approach called the dual-weighted
residual method that makes it possible to compute error estimates w.r.t. a specific
quantity of interest was proposed during that period by Becker et al. (2000). This
opened the door to algorithms that couple optimal control with AFEMs as discussed
in the survey by Becker and Rannacher (2001) and enhanced by, e.g., Becker et
al. (2000), Becker and Rannacher (2001), Ziems and Ulbrich (2011), and Liu et
al. (2015).

Furthermore, multifidelity methods are numerical optimization methods that have
a strong link to the field of adaptive optimal control. In the field of multifidelity
methods the focus is on unconstrained optimization problems with objective functions
that have varying fidelity w.r.t. the reality. Because this topic is not at the core of this
thesis, we refer the interested reader to Polak (1997), Alexandrov et al. (1998), Gratton
et al. (2008), and Peherstorfer et al. (2018) for a subset of papers that discuss this
topic.

Recently, adaptive refinement algorithms have been applied to energy networks.
As mentioned previously, the behavior of some energy networks have to be described
by PDEs that motivate the use of such algorithms. Due to the nonconvexity of
the equations modeling energy transport, the focus has initially been on developing
model catalogs that define a sequence of models with decreasing accuracy guarantees
w.r.t. the exact physics of the energy network; see, e.g., Domschke et al. (2021) for
gas networks, Mehrmann et al. (2018a) for electricity networks, and Hauschild et
al. (2020) for district heating networks. Domschke et al. (2015) propose discretization
and model error estimates for a subset of models in the gas network model catalog
by Domschke et al. (2021). Moreover, Stolwijk and Mehrmann (2018) provide an
error and sensitivity analysis of the gas equations with a specific focus on data
uncertainty. The error estimates of Domschke et al. (2015) are combined with an
adaptive refinement algorithm in Domschke et al. (2018) for transient gas network
simulation. Another approach for the simulation of gas networks is taken by Rüffler
et al. (2018), where a mode optimal switching control problem is proposed that
optimizes a performance index, which balances model accuracy and computational
cost for a simulation of the entire network. In the optimization literature, Schmidt
et al. (2015) and Schmidt et al. (2016) propose to iteratively solve an enhanced
version of a gas network optimization problem by increasing the model level of all
the pipes. Finally, Mehrmann et al. (2018b) use the error estimates of Stolwijk
and Mehrmann (2018) to set up an ARA that considers both model level switching
and discretization stepsize modification. This inspired the ideas presented in [MR2]
and [MR3]. To the best knowledge of the author of this thesis, these papers are
the only applications of adaptive refinement techniques that combine model level
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1.3 Contributions and Structure

switching and discretization stepsize modification for the case of energy network
optimization with ODE constraints.

1.3 Contributions and Structure

This cumulative dissertation is divided in two parts. Part I, referred to as the extended
summary, summarizes the content of the papers that make up this thesis. Here, we
refrain from repeating the proofs of the theoretical results. Furthermore, Part II
contains the reprints of the journal articles and preprints that Part I summarizes. We
now discuss the contributions of this thesis by referring to the respective chapters of
Part I.

In Section 1.2 we highlighted that ARAs have rarely been used for approximating
ODEs in energy network optimization problems. This thesis is an attempt to
contribute to this branch of the optimization literature. The primary objective is to
set up a generalization of ARAs for solving energy network optimization problems
with discretizable constraints. In more detail, the contributions of this cumulative
dissertation are threefold.

First, we contribute to the energy network optimization literature by presenting a
generalized optimization framework in Chapter 2. This framework bridges the gap
between energy networks and ARAs. Moreover, we pave the way for future works that
study theoretical aspects of generalized ARAs applied to energy network problems
with discretizable constraints. We first construct a general optimization model. Then,
two ways of coping with the discretizable constraints are discussed through the lens
of this general optimization problem. The first method, which can only be applied in
very specific cases, replaces the troublesome constraints with a surrogate function;
see, e.g., Sobester et al. (2008). The second method is a generalization of the ARAs
presented in Mehrmann et al. (2018b), [MR2], and [MR3].

Second, we consider two optimization problems originating from energy networks
that benefit from the application of ARAs; a stationary district heating network
operational optimization problem and a quantile-constrained optimization problem.
They are presented in Chapter 3 and 4, respectively. Additionally, the models are
reformulated to fit into the new generalized framework, and solved with the techniques
of Chapter 2. Hence, we highlight the applicability of the approach and discuss both
the strengths and weaknesses of the studied ARA.

Finally, through the applications that we consider, two extensions of the ARA are
presented. In Chapter 3, we focus on extending the algorithm with a coarsening and
down-switching step for the case of district heating network operation. In Chapter 4
the ARA is extended so that it provably terminates at a global optimal solution of
the quantile-constrained problem.

6



2
A Generalized Adaptive
Refinement Framework

This chapter presents a generalization of the adaptive refinement algorithms con-
sidered in Stolwijk and Mehrmann (2018), [MR2], and [MR3]. We remark that the
generalization that we propose is new and is uniquely inspired by the ideas in Stolwijk
and Mehrmann (2018), [MR2], and [MR3]. The concepts are illustrated using the
example of ODEs. Therefore, we expect the reader to have basic knowledge regarding
discretization of ODEs as described in, e.g., Süli and Mayers (2003) or Quarteroni
et al. (2007).

We shortly discuss the contents of this chapter. First, a general optimization
problem is presented that captures the characteristics of the optimization problems
considered in Stolwijk and Mehrmann (2018), [MR2], and [MR3]. Preliminary
assumptions about this general problem are stated. Second, the fitted surrogate
optimization problem and the discretized optimization problem are described on the
basis of these assumptions. Both problems approximate the general problem. Then,
the main contribution of this chapter is presented; a generalized adaptive refinement
algorithm designed to cope with the issues of the discretized problem.

In more detail, this chapter is outlined as follows. Section 2.1 introduces the
general optimization problem and states the assumptions about the problem. Then,
Section 2.2 presents the fitted surrogate optimization problem. Section 2.3 presents
the discretized optimization problem. Finally, Section 2.4 describes the functioning
of the adaptive refinement algorithm using the discretized problem presented in
Section 2.3. In addition, we lay the foundation for applying the adaptive refinement
algorithm in the next chapters.

7



2.1 General Problem

2.1 General Problem

We now state the general optimization problem that we consider throughout this
chapter and state the preliminary assumptions about its structure.

Let u ∈ U ⊆ Rm and w ∈ W ⊆ Ro be two sets of variables. Here u represents
the exact decisions to be made and the set w represents the auxiliary variables that
are uniquely determined by the constraints of the optimization problem when u is
fixed. For example, the w variables could be linked to the underlying application’s
internal dynamics, which are implicitly determined given a fixed value for the u
variables. Furthermore, a non-overlapping partition of w in α + 1 disjoint vectors
of variables wj is assumed such that w :=

(
w⊤
1 , . . . , w

⊤
α , w

⊤
α+1

)⊤ holds. We define
the set J := {1, . . . , α} associated to all disjoint variable sets of w except for wα+1.
Additionally, I represents an arbitrary subset of N. Then, the general optimization
problem reads

min
u,w

f(u,w)

s.t. gi(u,w) = 0, i ∈ I,
hj(u,wj) = 0, j ∈ J,
u ∈ U, w ∈W.

(G)

The first assumption specifies the type of functions hj that we are interested in.

Assumption 1 The function hj : U×Wj → R defined for all j ∈ J does not describe
an analytical expression, i.e., it cannot be represented with a finite number of standard
mathematical operations and functions.

Examples of functions that satisfy Assumption 1 are ordinary differential equations.
By definition, they contain differential operators and thus describe mathematical
expressions that are not analytical. In other words, unless they have an analytical
solution, no closed-form formula exists to compute their value.

Next, the functions f : U × W → R and gi : U × W → R for i ∈ I des-
ignate functions whose expressions are given explicitly in closed-form. The con-
straints gi(u,w) = 0 therefore encompass all the remaining closed-form constraints
of the underlying optimization problem. These constraints typically pose fewer
challenges when translating the original application into an optimization problem.

For the sake of illustration, we consider the case of optimal control problems, as,
e.g., described in Sethi and Thompson (2000). By associating the u variables to the
“controls” of the problem and the w variables to the “state” variables we can easily
cast any optimal control problem to the form of (G). Indeed, the ODEs governing
the controlled physics can then be represented with the constraints hj(u,wj) = 0
whereas the initial and boundary conditions can then be represented with gi(u,w) = 0
constraints.

In general, (G) cannot explicitly be solved by state-of-the art optimization solvers
due to Assumption 1. Consequently, there is a need for accurate approximations of hj .
In Stolwijk and Mehrmann (2018), [MR2], and [MR3] the constraints hj(u,wj) = 0

8



2.2 Fitted Surrogate Problem

can be approximated with a set of discretized closed-form constraints. In the field
of optimization with ODE constraints this idea is commonly referred to as the
first-discretize-then-optimize approach; see Hinze et al. (2009).

We now introduce the notation associated to this discretization. Hence, we
have the set of discretization variables zj ∈ Zj ⊆ Rnj and the set of discretization
constraints h̃j,k(u,wj , zj) = 0 defined for all k ∈ K(j) where K(j) ⊆ N. Moreover, the
variables zj link the constraints h̃j,k together. As a consequence, |K(j)| is expected
to be of O(nj), where nj denotes the dimension of zj .

We now state the second assumption about (G). To do so, we first define the sets
of feasible solutions. Hence, for j ∈ J , we define

Gj := {(u,wj) ∈ U ×Wj : hj(u,wj) = 0} ,
G̃j := {(u,wj) ∈ U ×Wj : ∃zj ∈ Zj , h̃j,k(u,wj , zj) = 0, k ∈ K(j)}.

Then, for all j ∈ J , the second assumption links the set K(j) of discretization
functions h̃j,k and the original function hj .

Assumption 2 For any ε > 0 and for any j ∈ J there exists a value for nj such
that

|hj(u,wj)| ≤ ε
holds for all (u,wj) ∈ G̃j.

Assumption 2 implies that there exists a large enough value for nj such that any
point inside G̃j will be “nearly” inside of Gj .

Going back to the ODE example, we highlight that a wide range of discretization
techniques exist for approximating differential operators; see, e.g., Quarteroni et
al. (2007). These techniques yield a set of constraints satisfying the description
of h̃j,k(u,wj , zj) = 0 with associated discretization variables zj . Furthermore, upper
bounds exist on the distance between the exact solution and the discretized solution
of an ODE, depending on the discretization stepsize, i.e., the value of nj . Again,
we refer to Quarteroni et al. (2007) for more details about convergence analysis of
numerical solutions to ODEs.

In the next two sections two closed-form optimization problems that approxi-
mate (G) are presented. The first problem uses a surrogate function to replace hj that
can only be used if hj(u,wj) can be evaluated for all (u,wj) ∈ U ×Wj . The second
problem uses the set K(j) of discretization functions h̃j,k to set up a closed-form
approximation problem.

2.2 Fitted Surrogate Problem

In this section we highlight the specific case in which the function hj has a closed-form
reformulation that can be used to set up an approximation problem. Naturally, we
consider the case where this reformulation can be evaluated but cannot directly
be used to replace hj in (G). Otherwise, the reformulation would make the ideas
of this chapter unnecessary. For example, such a closed-form reformulation of hj
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2.2 Fitted Surrogate Problem

exists when hj describes an ODE that has a continuous closed-form solution that
is parameterized by a case distinction. Then, the reformulation cannot be used
directly for replacing hj in (G) since state-of-the-art optimization solvers do not
accept case-distinctions; see, e.g., Byrd et al. (2006) for the KNITRO solver.

If such a reformulation exists, a closed-form surrogate function can be designed to
approximate hj in (G), see, e.g., Sobester et al. (2008) and Peherstorfer et al. (2018).
One way of designing such a surrogate function is to fit an ansatz function hfit

j to hj
on a sample of the set of feasible u and wj values. If a large enough sample of U ×Wj

exists and hj is continuous over U×Wj , then an approximation function hfit
j might be

sufficient for replacing hj in (G). This is the idea of the fitted surrogate optimization
problem that we consider.

Thus, we can select a finite subset D ⊆ U ×Wj , a loss function ℓ : R× R→ R+,
and an ansatz function hfit

j : U ×W × Λj → R where Λj ⊆ Ro models the set of
feasible parameters. Using the classic fitting problem, see Deisenroth et al. (2020, p.
260), we look for λ∗j ∈ Λj that minimizes

min
λj∈Λj

1

|D|
∑

(u,wj)∈D
ℓ(hj(u,wj), h

fit
j (u,wj , λj)). (2.1)

The objective function value of optimization problem (2.1) is a measure for the fitting
accuracy of hfit

j with respect to hj over D. This allows to judge the quality of the
approximation over the set D.

Given hfit
j with λ∗j ∈ Λj that solves (2.1), we define the fitted surrogate optimiza-

tion problem

min
u,w

f(u,w)

s.t. gi(u,w) = 0, i ∈ I,
hfit
j (u,wj , λ

∗
j ) = 0, j ∈ J,

u ∈ U, w ∈W.

(F)

We draw the attention to the fact that the fitting presented in (2.1) does not
necessarily give good results if used in (F). It might indeed happen that some very
precise dynamics of hj cannot be captured by an ansatz function hfit

j with a reasonable
amount of nonlinear terms, see Fajemisin et al. (2021). Furthermore, an accurate
representation of the challenging dynamics of hj over U ×Wj can require a dense set
of samples inside U ×Wj . Depending on the size of U ×Wj , this set of samples might
have to be too large for (2.1) to stay solvable. Hence, if one of these prerequisites
is not met, the use of a fitted function can introduce approximation errors that will
likely lead to solutions that are far away from any feasible solution of (G).

In more detail, for j ∈ J , we define

Gfit
j :=

{
(u,wj) ∈ U ×Wj : h

fit
j (u,wj) = 0

}
.

Then, Assumption 2 does not necessarily hold if we replace G̃j by Gfit
j . As a conse-

quence, this creates the need for different algorithmic techniques that exploit the

10



2.3 Discretized Problem

feasibility guarantees of the h̃j,k functions over the entirety of U ×Wj , as stated
in Assumption 2. In the next section we will therefore introduce the closed-form
optimization problem that approximates (G) using the functions h̃j,k.

2.3 Discretized Problem

As a first step towards exploiting Assumption 2 inside the adaptive refinement
algorithm, we state the optimization problem that replaces the constraints hj(u,wj) =
0 with the set K(j) of approximation constraints h̃j,k(u,wj , zj) = 0.

To keep the notation simple we merge the non-overlapping variable vectors zj
using z :=

(
z⊤1 , . . . , z

⊤
α

)⊤ ∈ Z ⊆ Rn. Then, by adding z to (G) and applying the
constraint approximations for all j ∈ J in (G) we get the discretized optimization
problem

min
u,w,z

f(u,w)

s.t. gi(u,w) = 0, i ∈ I,
h̃j,k(u,wj , zj) = 0, j ∈ J, k ∈ K(j),

u ∈ U, w ∈W, z ∈ Z.

(D)

The functions h̃j,k allow to find “near”-feasible solutions to problems like (G) but
are in practice complicated to deal with. First, it can happen in practice that the
constraints h̃j,k(u,wj , zj) = 0 have varying steep gradients. This phenomenon is a
consequence of the amount of nonlinear terms in the expression of the h̃j,k functions.
In fact, some nonlinear terms in the expression of h̃j,k may not be necessary for
every j ∈ J to get “near”-feasible solutions of (G). Second, nj needs to be large
enough so that Assumption 2 is satisfied. However, an unnecessary high value of nj
increases the size of the optimization problem, hence making it harder solve. A
trade-off therefore exists for the choice of the amount of nonlinear terms in the
description of h̃j,k and the size of nj to get good quality decisions u while keeping the
resulting (D) solvable in reasonable time by a state-of-the-art optimization solver.

In what follows, we consider optimization models that have the structure of (G)
and satisfy Assumptions 1 and 2. We focus on how to choose the expression of h̃j,k
and the value of nj in (D) and present a generalized adaptive refinement framework
that automates this decision making.

2.4 Adaptive Refinement Algorithm

Adaptive refinement algorithms cope with the challenges associated with choosing
the expression of h̃j,k and the value of nj by bridging the gap between (G) and (D).

In a nutshell, an ARA iteratively solves a version of (D) and uses the resulting
solution to improve the approximation accuracy of the next instance of (D). This
version of (D) is then solved and the process is repeated. Therefore, the ARA
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(D) B ⊆ J

(ũ, w̃) ∈ U ×W

h̃j,k

Figure 2.1: State diagram of the ARA. The state on the left-hand side corresponds
to solving (D) and the state on the right-hand side corresponds to the creation of
B ⊆ J .

sequentially enhances (D) through the results of the previous iteration of the ARA as is
commonly done in adaptive optimal control, see; e.g., Bangerth and Rannacher (2003).

We now explain in detail the general ideas of the ARA that we study with the
help of Figure 2.1. It shows a state diagram describing the ARA process. Two states
that summarize how the algorithm functions are visible in the schematic of Figure 2.1.
The first state, located on the left side of the schematic, corresponds to the solve
phase of the ARA. Here, the ARA takes a specific version of (D) and solves it using an
optimization solver. The decision variables ũ and the remaining variables w̃ resulting
from the first state are then transferred to the second state located on the right side
of the schematic. Here, the ARA checks for feasibility w.r.t. (G) of (ũ, w̃). If hj(ũ, w̃j)
is close enough to 0 for all j ∈ J then the ARA is stopped. Otherwise, a subset of
indices B ⊆ J is selected. For all j ∈ B, the accuracy of the set K(j) of functions h̃j,k
in (D) is improved. Two changes can be made. Either the amount of nonlinear terms
of h̃j,k or the value of nj can be increased. Then, the ARA proceeds back to the first
state where the ARA solves the new version of (D).

The general idea of this scheme is to get near-feasible solutions to (G) while
keeping the intermediate (D)s tractable. Moreover, the quantification of infeasibility
allows to identify the indices j ∈ J whose functions need a more refined approximation
while leaving unchanged the remaining indices.

In what follows, we introduce the components that specify the exact functioning
of the generalized adaptive refinement framework. We start by introducing the
concepts of model catalogs that are used to reduce the complexity of solving (D)
when a simpler mathematical expression for h̃j,k could yield similar near-feasible
solutions. Then, we define the idea of error measures that quantify the degree of
infeasibility of hj(ũ, w̃j) = 0 given a point (ũ, w̃) ∈ U ×W and j ∈ J . Additionally,
we define the concept of ε-feasibility, that formalizes near feasibility and is the
stopping criterion of the ARA. Next, the ideas of marking and switching strategies
are introduced. They define a set of strategies for selecting the elements of B and
a set of strategies for modifying (D) to increase the approximation accuracy of the
resulting model, respectively. Finally, the adaptive algorithm is specified with the
use of the aforementioned building blocks.
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nonlinear terms
hβj h2j h1j

nonlinear terms
h̃βj,k h̃2j,k h̃1j,k

Figure 2.2: Model catalog of hj obtained by sequentially modifying the amount of
nonlinear terms.

2.4.1 Model Catalogs

In general, for some j ∈ J , the expressions of h̃j,k can have an unnecessarily high
amount of nonlinear terms in order for (D) to return near-feasible solutions. In the
ARA this is dealt with using a set L := {1, . . . , β} ⊆ N of model simplifications of hj ,
indicated by hθj for θ ∈ L. These simplified models yield a set of approximation
functions h̃θj,k with a decreasing amount of nonlinear terms and result from applying
the same problem-specific numerical techniques used for getting h̃j,k from hj . We
refer to Domschke et al. (2021) for a detailed catalog of models derived for the case
of gas networks and to Schmidt et al. (2015) and Schmidt et al. (2016) for the study
of optimization problems that consider different model levels in this model catalog.
Similar model catalogs exist for electricity networks, see; e.g., Mehrmann et al. (2018a)
for the transient case and Molzahn and Hiskens (2019) for the stationary case.

The general idea is illustrated in Figure 2.2; we use a catalog that consists of
functions with a decreasing amount of nonlinear terms that lead to a catalog of
discretized closed-form functions. It is usually the case that h1j equals hj and is
therefore considered to be the most detailed level in the catalog. In the case that
function hj describes an ODE, we can obtain such a catalog by, e.g., sequentially
dropping nonlinear terms. The terms of hj can then, for instance, be dropped
depending on their modeling importance.

With this model catalog L at hand and by selecting a model level ℓj ∈ L for
all j ∈ J , we replace h̃j,k in (D) by h̃ℓjj,k yielding the simplified discretized optimization
problem

min
u,w,z

f(u,w)

s.t. gi(u,w) = 0, i ∈ I,
h̃
ℓj
j,k(u,wj , zj) = 0, j ∈ J, k ∈ K(j),

u ∈ U, w ∈W, z ∈ Z.

(SD)

We note that the choice of nj and ℓj will highly influence the time to solve (SD).
A less detailed version of (SD) is, in theory, computationally easier to solve but
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might lead to infeasible solutions w.r.t. (G). On the contrary, a more detailed version
of (SD) will be computationally more challenging but will more likely lead to near
feasible solutions of (G). This mismatch highlights the importance of the ARA that
is constructed to gradually increase nj and switch down ℓj for specific j ∈ J . In
doing so, error measures play an important role and are the topic of the next section.

2.4.2 Error Measures

We now introduce the concept of error measures in adaptive refinement algorithms.
For a given point (u,w) ∈ U ×W and j ∈ J , error measures quantify the degree of
infeasibility of hj(u,wj) = 0. They allow to identify the indices j ∈ J for which the
increase of nj and switch-up of ℓj will increase the approximation accuracy of (SD)
in the next ARA iteration. Hence, they are used to select the elements B ⊆ J that is
introduced in Section 2.4.

Error measures were initially used to bound the error induced by finite element
approximations of PDEs; see, e.g., Becker and Rannacher (2001). We adapt this
concept to the case of optimization with discretizable constraints.

We make a case distinction between exact errors and error estimates. We begin
by presenting exact errors and differentiate between three different error types; the
exact total error, the exact model error, and the exact discretization error. Then, we
derive the concept of error estimates by highlighting the conceptual weaknesses of
the exact errors.

Exact Errors

We now define the exact total error that quantifies the infeasibility w.r.t. (G) of a
solution originating from the approximation considered in (SD). For a specific j ∈ J ,
the exact total error highlights how far a point (ũ, w̃) ∈ U × W is from satisfy-
ing hj(ũ, w̃j) = 0. According to this idea, let nj and ℓj be fixed for all j ∈ J
and (ũ, w̃, z̃) ∈ U ×W ×Z be a point that satisfies the constraints of (SD). For j ∈ J
we define the exact total error as

νj(ũ, w̃) := |h1j (ũ, w̃j)|. (2.2)

Hence, the exact total error is the absolute value of h1j (ũ, w̃j), i.e., the distance
between the most detailed model h1j evaluated at (ũ, w̃j) and zero.

Next, we derive an important feature of the exact total error. This feature allows
to express νj(ũ, w̃) as a difference of variables that satisfy hj(u,wj) = 0 and variables
that satisfy h̃

ℓj
j,k(u,wj , zj) = 0 for all k ∈ K(j). On a first glance, rewriting exact

errors in this way might not seem necessary. However, e.g., for ODEs, problem-specific
upper bounds of this variable difference that depend on nj exist; see, e.g., Quarteroni
et al. (2007). These results can be used to show that (G) satisfies Assumption 2.

We now describe this feature. For all θ ∈ L, let κθ : Rm × Rp−1 → R be a
predetermined function and let wj(ι) denote the variable at index ι ∈ {1, . . . , p} of
variable vector wj . It may happen that a fixed index δ ∈ {1, . . . , p} exists such that
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for all θ ∈ L we can rewrite the constraint hθj(u,wj) = 0 in the form

hθj(u,wj) = κθ (u,wj(1), . . . , wj(δ − 1), wj(δ + 1), . . . , wj(p))− wj(δ) = 0. (2.3)

In other words, we can isolate the variable wj(δ) in the mathematical expression
of hθj(u,wj). Furthermore, let ψθ

j (δ) be the value of variable wj(δ) in Equation (2.3)
when we set u = ũ and wj(ι) = w̃j(ι) for all ι ∈ {1, . . . , p} \ {δ}. Then, by
replacing h1j (ũ, w̃j) in (2.2) with its reformulation in (2.3) it holds

νj(ũ, w̃) = |ψ1
j (δ)− w̃j(δ)|. (2.4)

Similarly to the exact total error, we define the exact model error that computes
the error due to the model selection in (SD) and use Equation (2.3) to reformulate it.
Hence, the exact model error reads

νm
j (ũ, w̃) := |h1j (ũ, w̃j)− hℓjj (ũ, w̃j)| (2.5)

= |ψ1
j (δ)− ψ

ℓj
j (δ)|. (2.6)

We note that νm
j (ũ, w̃) computes the error due to the model selection in (SD) and is

not related to the value of nj .
Furthermore, we define the exact discretization error that computes the error

due to the chosen discretization in (SD), i.e., due to the value of nj . Again, we use
Equation (2.3) to reformulate it. Hence, the exact model error is defined as

νd
j (ũ, w̃) := |h

ℓj
j (ũ, w̃j)| (2.7)

= |ψℓj
j (δ)− w̃j(δ)|. (2.8)

we note that that νd
j (ũ, w̃) computes the error due to the chosen discretization in (SD)

and hence fixes the model level to ℓj .

Error Estimates and Relationship with Exact Errors

The exact errors require the value of hθj(ũ, w̃j) or ψθ
j (δ) which are not available in

general. Nevertheless, the exact errors can be bounded from above via problem-
specific estimates in some applications. We call them error estimates because they
bound the associated exact error to a certain order of accuracy without having to
evaluate hθj(ũ, w̃j) or ψθ

j (δ). We refer to Stoer and Bulirsch (2002, p. 482) for an
introduction to error estimates. Moreover, we highlight that, in the following, the
relation f1(x) ≤̇ f2(x) states that a function f2 is a first-order upper bound of the func-
tion f1 if and only if f1(x) ≤ f2(x) + r(x) for x→ 0 and some function r ∈ o(∥f2∥∞).

Then, for every feasible solution (ũ, w̃, z̃) ∈ U ×W × Z of (SD) and for every
index j ∈ J , we introduce the model error estimate denoted by ηm

j (ũ, w̃) and the
discretization error estimate denoted by ηd

j (ũ, w̃) such that they satisfy

νm
j (ũ, w̃) ≤̇ ηm

j (ũ, w̃), (2.9)

νd
j (ũ, w̃) ≤̇ ηd

j (ũ, w̃). (2.10)

15



2.4 Adaptive Refinement Algorithm

Using the definitions in Equations (2.2), (2.5), (2.7), (2.9), and (2.10), we can
derive the upper bound

νj(ũ, w̃) := |h1j (ũ, w̃j)| = |h1j (ũ, w̃j)− hℓjj (ũ, w̃j) + h
ℓj
j (ũ, w̃j)| (2.11a)

≤ νm
j (ũ, w̃) + νd

j (ũ, w̃) ≤̇ ηm
j (ũ, w̃) + ηd

j (ũ, w̃), (2.11b)

where we used the triangular inequality. For the sake of completeness, we use the
result of Line (2.11b) to define the total error estimate

ηj(ũ, w̃) := ηm
j (ũ, w̃) + ηd

j (ũ, w̃), (2.12)

implying that
νj(ũ, w̃) ≤̇ ηj(ũ, w̃).

We extract two main take-aways from (2.11). First, the influence of the model error
and the discretization error on the total error can be identified. Hence, this feature tells
us if the ARA needs to focus on increasing nj or switching up ℓj for a specific j ∈ J .
Second, we can use estimates instead of exact errors in the ARA. Indeed, once
estimates are proved for exact errors and a feasible solution (ũ, w̃, z̃) ∈ U ×W × Z
of (SD) is provided we can easily identify how to decrease the total exact error
without the need to evaluate hθj(ũ, w̃j) or ψθ

j (δ).

2.4.3 Stopping Criterion: ε-Feasibility

To terminate the ARA, we need to specify what a solution of (SD) needs to satisfy
to be near-feasible w.r.t. (G). This criterion is called ε-feasibility and is discussed
in, e.g., Locatelli and Schoen (2013, p. 289). With the use of the newly introduced
error measures defined in Section 2.4.2 we can state the definition of ε-feasibility of
an ARA solution.

Definition 1 Let ε > 0 be a given tolerance. The feasible point (ũ, w̃, z̃) ∈ U×W×Z
of (SD) is called ε-feasible if

ν̄(ũ, w̃) :=
1

|J |
∑

j∈J
νj(ũ, w̃) ≤ ε,

where ν̄(ũ, w̃) is called the total average exact error.

Hence, as long as we keep increasing nj and switching up ℓj for all j ∈ J , Assumption 2
of Section 2.1 forces the total average exact error to decrease until it is smaller than ε.

We remark that, in practice, the total average error estimate η̄(ũ, w̃) :=
1
|J |
∑
j∈J

ηj(ũ, w̃) is used instead. This can be done because, by construction of the

error estimates, η̄(ũ, w̃) is an upper bound for ν̄(ũ, w̃).
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2.4.4 Marking and Switching Strategies

In the ARA case, marking strategies select the subset of indices B of J to be modified
in the next (SD) that is solved, as discussed in Section 2.4. In more detail, marking
strategies return a subset of J by using error estimates computed for a point of the
feasible region of (SD). In general, they focus on selecting a subset of indices with
the largest error estimate value. We refer to Nochetto et al. (2009, p. 93) for a list of
the most popular AFEM marking strategies.

We distinguish between the discretization refinement marking strategy σR and
the model up-switching marking strategy σU that respectively yield the sets R,U ⊆ J .
The sets R and U contain the elements for which nj and ℓj are modified, respectively.
As the name suggests, the discretization refinement marking strategy selects the
elements of R based on ηd

j (ũ, w̃). Similarly, the model up-switching marking strategy
selects the elements of U based on ηm

j (ũ, w̃).
Switching strategies determine how to modify nj and ℓj in (SD) for the elements

of R and U . We therefore consider two types of switching strategies. First, we
introduce the discretization refinement rule ξR : N → N as an increasing function
applied on every j ∈ R that acts on nj . Second, we introduce the model up-switching
rule ξU : L → L as an decreasing function applied on every element j ∈ U that acts
on ℓj .

2.4.5 Detailed Description of the ARA

We have introduced all the necessary concepts for discussing the exact functioning of
the ARA. Hence, in the following, we describe the adaptive refinement algorithm in
detail. Algorithm 1 shows the pseudo-code of the algorithm. The inputs are the error
tolerance ε, the marking strategies σR, σU , and the switching strategies ξR, ξU . The
output is an ε-feasible solution of (G) arising from a detailed version of (SD).

We now explain the main parts of the algorithm. Before entering the main for
loop in Line 6, the ARA initializes the parameters nj and ℓj with a small and a
large value, respectively. The first optimization problem that is instantiated and
solved, i.e., (SD)0, therefore is a low-detail approximation of (G). Then, the resulting
solution (ũ, w̃)0 of (SD)0 is checked for ε-feasibility. If (ũ, w̃)0 is ε-feasible, which is
very unlikely as (SD)0 approximates (G) poorly, the ARA terminates. Otherwise,
we leave the initialization phase and enter the main for loop of the ARA in Line 6.
Moving forward, we use the subscript k to indicate the current iteration of the ARA.
First, we create the sets Rk and Uk with the help of the marking strategies. In
Lines 8 and 9, we update the discretization of the resulting (SD)k. For every j ∈ Rk,
the value of nkj is computed using the improvement rule ξR applied to nk−1

j . In
Lines 10 and 11, the same ideas are applied for the model switch in (SD)k, yielding
the new model level ℓkj for all j ∈ Uk. Finally, in the last part of the main for loop,
we instantiate and solve model (SD)k. As before, we check for ε-feasibility of the
resulting (ũ, w̃)k solution. Unless ε-feasibility of (ũ, w̃)k is achieved, the same process
is repeated until ε-feasibility is satisfied.
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Algorithm 1: Adaptive refinement algorithm

Input: error tolerance ε > 0, marking strategies σR, σU , and improvement
rules ξR, ξU

Output: ε-feasible solution (u,w) of (G)

1 foreach j ∈ J do
2 Initialize ℓ0j and n0j
3 (ũ, w̃, z̃)0 ← Solve (SD)0

4 if (ũ, w̃)0 is ε-feasible then
5 return (u,w)← (ũ, w̃)0

6 for k = 1, 2, . . . do
7 Compute sets Rk,Uk according to σR, σU
8 foreach j ∈ Rk do
9 Increase nkj according to ξR

10 foreach j ∈ Uk do
11 Switch-up ℓkj according to ξU

12 (ũ, w̃, z̃)k ← Solve (SD)k

13 if (ũ, w̃)k is ε-feasible then
14 return (u,w)← (ũ, w̃)k

Figure 2.3 is a more detailed version of Figure 2.1 that includes the new concepts
and notation introduced for explaining the ARA in Algorithm 1.

2.4.6 Features

We now highlight two features of the ARA that show why it is a well-suited candidate
for solving problems like (G).

The ARA can terminate at ε-feasible solutions by only relying on error estimates.
Indeed, the use of error estimates in the ARA is straightforward. Once we prove
that error estimates bound the exact errors from above, we can easily replace the
exact errors with their associated estimates in the ARA. Therefore, this removes the
need for any evaluation of hj while still ensuring termination at ε-feasible points
of (G). Also, the error origin is easily identified due to the distinction between the
model error and the discretization error. This strengthens the ARA and highlights
its adaptivity regarding the specific problem that is considered.

Next, the ARA inherently produces good warmstarts for the successive instances
of (SD) that are solved. The point (ũ, w̃, z̃)k−1 can be close to a feasible point
of (SD)k depending on the application that is considered and the size of Rk and Uk.
Hence, this makes it a good initial iterate for optimization solvers. Consequently, the
warmstart of the successive (SD)k can speed up the time for the ARA to reach its
termination criterion.
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(SD) R,U

(ũ, w̃) ∈ U ×W

nj , ℓj

Figure 2.3: State diagram of Figure 2.1 enhanced with the new concepts and notation
of Algorithm 1. In the state on the left-hand side (SD) is solved and in the state on
the right-hand side we select the sets R,U ⊆ J .

2.4.7 Extensions

This section concludes this chapter by presenting a series of extensions from which
the ARA can benefit depending on the specificities of the underlying problem.

First, the ARA can be subject to the curse of dimensionality, i.e., the subse-
quent (SD) instances explode in size. This is usually due to the parameterization of
the ARA that orients the focus toward improving the approximation accuracy of (SD)
without considering the size of the resulting models. More specifically, the marking
and switching strategies are at the core of this issue as they determine how the model
structure evolves. For handling this, we refer to Chapter 3, which is based on [MR2]
and deals with this challenge by adding a coarsening and model down-switching step
to the ARA.

Second, a proof of finite termination at an ε-feasible point is an important feature
to look for. It might in some applications even be necessary to make the correct
choice of marking and switching strategies. To obtain such a result one usually proves
that between two iterations of the ARA the total average error estimate decreases.
Therefore, it is common practice to show that there exists a constant C > 0, such
that

η̄k(ũ, w̃)− η̄k+1(ũ, w̃) > C,

for all iterations k of the ARA. In [MR2], summarized in Chapter 3, we prove finite
termination of an adaptive optimization algorithm given a set of conditions on the
parameters of the algorithm.

Finally, in some applications, finite termination at an ε-feasible points comes
for granted because of the structure of the underlying problem. This is the case in
Chapter 4 where we discuss the content of [MR3]. In this paper, we enhance the
ARA so that it finitely terminates at a global optimal solution of (G).
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3
Optimization of District Heating

Networks

This chapter summarizes [MR1] and [MR2] where the optimization of stationary
district heating networks (DHNs) is considered. First, we present an operational
optimization model, discuss it, and show that it can be reformulated as (G). Moreover,
we demonstrate that the operational optimization model satisfies the assumptions
made about (G) stated in Section 2.1. Then, we sequentially extend this model for
the cases considered in [MR1] and [MR2]. Furthermore, the concepts of Chapter 2
are applied to approximate specific ODE constraints of the models. Finally, the
numerical results of both papers are presented.

In more detail, Section 3.1 introduces district heating networks. Afterward, the
functioning principles of DHNs are translated into a mathematical optimization
framework in Section 3.2. Then, Section 3.3 extends this model to the case of [MR1],
where DHN expansion decision making is considered. Here, the ideas of Section 2.2
are applied. Similarly, Section 3.4 extends the original model to the case of [MR2]
and applies the ideas of Section 2.4 to compute ε-feasible controls for DHN operation.

3.1 Introduction to District Heating Networks

District heating networks are energy transportation networks that allow to efficiently
connect heat producers to many individual heat consumers. They are composed of
four parts; energy producers, the forward flow network, the energy consumers, and
the backward flow network. Water flows through the network to transport the heat
from the producers to the consumers.

We now explain in detail how DHNs work and explain how each part contributes
to the heat transfer. First, the energy producers transfer energy to incoming water
under the form of heat. More specifically, the water flows through depots where the

20



3.2 Stationary District Heating Network Operation

energy transfer takes place. This energy can originate from various sources, e.g.,
through renewable energy production, heat production from industrial processes, or
simply from burning gas.

Second, the outgoing hot water is transported to the consumers of the network
using a network of insulated pipes, called the forward flow network. The aim is to
transport the energy with as little losses as possible.

Third, after being transported through this network of insulated pipes, the water
reaches the third component of the network, the energy consumers. Here, heat
exchangers extract heat from the incoming water and transfer it to the consumers’
water. It should be noted that, usually, the heat exchange occurs without mixing
of the incoming water and the consumers’ water. The water that is now hot on
the consumer side is used for satisfying the consumers’ heat demand. The outgoing
water of the heat exchangers, i.e., the water flowing through the DHN, significantly
decreases in temperature as a result of the heat transfer.

Finally, the heat exchangers’ outgoing water enters the last part of the network,
the backward flow network, a network of pipes in the opposite direction of the forward
flow that transports the cooled water back to the depots of the network. Hence,
we draw attention to the fact that a DHN fundamentally represents a closed-loop
energy-distribution network. In other words, no water enters or leaves the network.

3.2 Stationary District Heating Network Operation

As a first step towards presenting the results of [MR1] and [MR2], we show how
to mathematically model stationary DHN operation. Therefore, the modeling of
every component that is introduced in Section 3.1 is discussed here. We first focus
on describing the network using graphs. With the help of this graph description,
we present how we model the behavior of water inside the pipes, the interaction of
water at pipe intersections, and the effect of both depots and consumers on incoming
water. We conclude this section with a generalized stationary operational optimization
problem that is later used for describing [MR1] and [MR2].

3.2.1 Graph Description of the Network Topology

To describe the structure of a DHN we introduce a graph G = (V,A) that mimics the
topological characteristics of the network. In what follows, we use the four components
of Section 3.1 to introduce associated arc sets that are part of A. Furthermore,
Figure 3.1 shows an exemplary graph of a small DHN to visually support this
interpretation.

First, we introduce the depot arc set Ad, shown as a solid red arc in Figure 3.1.
Second, we represent the consumers of the network with the arc set Ac illustrated by
dotted green arcs in Figure 3.1. Finally, we divide the network of pipes into the arc
set of forward flow pipes Aff and the arc set of backward flow pipes Abf. Figure 3.1
shows the elements of Aff in dashed black and the elements of Abf in dashed blue. As
a consequence, Aff and Abf span the set of pipes Ap such that Ap := Aff ∪Abf. The
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3.2 Stationary District Heating Network Operation

Figure 3.1: Visualization of the associated graph for a small size DHN. The solid
red arc corresponds to the depot of the network ad ∈ Ad, the dashed black arcs
correspond to the forward flow pipes a ∈ Aff, the dotted green arcs correspond to
the consumers a ∈ Ac, and the dashed blue arcs correspond to the backwards flow
pipes a ∈ Abf.

junctions and the union of the arcs of Aff, Abf, Ac, and Ad create the set of nodes V
and the set of arcs A. In particular, this means that A := Aff ∪Abf ∪Ac ∪Ad.

3.2.2 Modeling of Hot Water Inside the Pipes

The transport of hot water inside of the pipes is modeled with the Euler equations
for compressible fluids in cylindrical pipes; see, e.g., Chorin and Marsden (1993)
or Hauschild et al. (2020). In their most detailed version, they induce equations that
cannot be treated by state-of-the-art optimization solvers on realistic networks. It is
therefore reasonable to assume a simplified behavior. To this end, we summarize the
simplifying assumptions that we make. First, the pipes are assumed to have a constant
cylindrical shape, i.e., they have a constant radius and a constant slope. Furthermore,
we assume that the fluid is incompressible and that its state only changes in the
direction of the pipe. Finally, we focus on stationary operation of the network, hence,
resulting in physical quantities that evolve only over space (x), i.e., the axis induced
by the direction of the pipe. Here and in what follows, let La, Da, λa, and h′a be the
length, the diameter, the friction coefficient, and the slope of pipe a ∈ Ap, respectively.
Moreover, we denote the gravitational acceleration by g. Further, let ρ represent the
density, p the pressure, and v the velocity of the water flowing inside the network.
These are all variables which are indexed over a ∈ Ap and which model functions
that map any spatial position x ∈ [0, La] to the respective physical quantity inside
the pipe. Additionally, they also capture the associated nodal quantity when indexed
over u ∈ V .

Due to the simplifying assumptions, the first Euler equation, also called the
continuity equation, reduces to va(x) and ρa(x) being constant for all x ∈ [0, La].
In what follows, va and ρa are therefore considered unique on every arc a ∈ Ap.
Furthermore, the second Euler equation, when complemented with the simplifying
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assumptions, reduces to

0 =
pa(La)− pa(0)

La
+
λaρa
2Da

|va|va + gρah
′
a, (3.1)

where we compute the friction coefficient λa with the law of Nikuradse; see,
e.g., Borsche et al. (2019). For a more detailed discussion of the Euler equations, we
refer to [MR2] or Krug et al. (2021b). Since incompressible flow is considered, we
complement Equation (3.1) with the constant state equation

ρa = 997 kgm−3

for all a ∈ Ap. Consequently, ρa is replaced by a scalar parameter ρ for every pipe of
the network.

Next, the thermal behavior of water is described through the last Euler equation,
i.e., the internal energy density equation, as discussed in Hauschild et al. (2020)
and Domschke et al. (2021). We denote by e and T the internal energy density and
the temperature of the water, respectively. Under the simplifying assumptions, the
internal energy density equation reads

0 = va
dea
dx

(x)− λa
2Da

ρ|va|v2a +
4Ua

Da
(Ta(x)− TW), (3.2)

where TW is the temperature of the soil surrounding the pipe and Ua denotes the
heat transfer parameter of the pipe. In addition to Equation (3.2), a second state
equation is considered to close the resulting system. Different versions of such a
state equation exist, which influence the modeling accuracy. We refer to Hauschild
et al. (2020, p. 5) for a discussion of state equations of hot water flowing in a pipe.
Since, in what follows, two different expressions are used we keep the description
general. Hence, we consider a state function ζ : R+ × R+ → R+ that complements
Equation (3.2) such that

Ta(x) = ζ(ea(x), ρ) (3.3)

holds for all a ∈ Ap.

3.2.3 Nodal Coupling

All network elements are coupled via equations defined over the set V . Schmidt
et al. (2016) introduce and discuss the modeling of nodal interactions in gas networks.
We follow this approach and apply it to DHNs as presented in Hauschild et al. (2020)
and Krug et al. (2021b). Three conservation laws are necessary for modeling arc
intersections: the conservation of mass, the pressure continuity, and the conservation
of energy. For node u ∈ V , let δin(u), δout(u) ⊆ A be the set of ingoing and outgoing
arcs of u. Let the variable qa denote the mass flow inside pipe a ∈ Ap that is
proportional to va and ρ such that qa = ρvaAa, where Aa is the cross-sectional area
of a. Since ρa and va are constant for all a ∈ A, qa is constant as well. Then, mass
conservation and pressure continuity read

∑

a∈δin(u)
qa =

∑

a∈δout(u)

qa, u ∈ V, (3.4)
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and

pu = pa(0), u ∈ V, a ∈ δout(u),

pu = pa(La), u ∈ V, a ∈ δin(u).
(3.5)

Finally, we consider the conservation of energy via the complementarity-constrained
reformulation presented in Hante and Schmidt (2019). Therefore, it holds for all u ∈ V
that

∑

a∈δin(u)

ea(La)qa
ρ

=
∑

a∈δout(u)

ea(0)qa
ρ

,

0 = βa(ea(0)− eu), a ∈ δout(u),

0 = γa(ea(La)− eu), a ∈ δin(u),

(3.6)

with the variables βa and γa that satisfy the complementarity constraints

qa = βa − γa, βa ≥ 0, γa ≥ 0, βaγa = 0, (3.7)

for all a ∈ A.

3.2.4 Depots and Consumers

The depots and the consumers of the network inject and extract energy in and from
the network, respectively. We refer to Krug et al. (2021b) for a detailed discussion of
depot and consumer constraints.

We first summarize the depot constraints. For ad ∈ Ad, we have

pu = ps,

Pp =
qad

ρ
(pad(Lad)− pad(0)) ,

Pw + Pg =
qad

ρ
(ead(Lad)− ead(0)) ,

(3.8)

where ps is the stagnation pressure and Pp, Pw, and Pg are power variables that
influence pressure increase, the internal energy density of the water obtained by
recuperating heat from industrial processes, and the internal energy of the water
obtained by burning natural gas.

Furthermore, we model the consumers a = (u, v) ∈ Ac using

Pa =
qa
ρ
(ea(0)− ea(La)) , (3.9a)

ea(0) ≥ effa , (3.9b)

ea(La) = ebf, (3.9c)
pv ≤ pu, (3.9d)

where Pa is the heat power consumed by consumer a, effa is the lower bound on the
incoming internal energy density, and ebf is the value of the internal energy density
of the outgoing water.
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3.2.5 Bounds

We now introduce bounds on the variables which originate from physical and technical
network characteristics. First, the massflow of every arc a ∈ A is bounded such that

q−a ≤ qa ≤ q+a (3.10)

holds, where q−a = 0 for all a ∈ Ad ∪Ac. Next, for every node u ∈ V , we have bounds
on pressure and temperature,

pu ∈ [p−u , p
+
u ], Tu ∈ [T−

u , T
+
u ]. (3.11)

Finally, the depot power variables are also bounded,

Pp ∈ [0, P+
p ], Pw ∈ [0, P+

w ], Pg ∈ [0, P+
g ]. (3.12)

We highlight the fact that P+
p and P+

g will likely be equal to infinity, whereas P+
w

is finite. Indeed, excess power originating from industry is in practice bounded unlike
gas power or electrical power (for increasing the depot pressure) that are, except in
unforeseen circumstances, always available.

3.2.6 Operational Optimization Problem

The complete behavior of a DHN can now be captured in an operational optimization
problem. Therefore, we add the objective function

CpPp + CwPw + CgPg (3.13)

to the model. Here, Cp, Cw, and Cg denote the cost of pressure increase, waste
incineration, and natural gas, respectively. Expression (3.13) models the total payment
incurred by the network operator to satisfy the consumers’ power demand. This
yields the stationary district heating network operational optimization model

min objective: (3.13),
s.t. momentum: (3.1)

internal energy density: (3.2) with (3.3),
mass conservation: (3.4),
pressure continuity: (3.5),
energy conservation: (3.6) with (3.7),
depot constraints: (3.8),
consumer constraints: (3.9),
bounds: (3.10)–(3.12).

(O-DHN)
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3.2.7 Discussion of the Model

Model (O-DHN) can, in its current form, not be solved with optimization solvers.
Indeed, the internal energy density equation (3.2) is an ODE and therefore is not a
analytical expression. This makes it a candidate for the approximation techniques
discussed in Chapter 2. Therefore, we first show that (O-DHN) can be reformulated
in the structure of (G) of Section 2.1. Moreover, we discuss why (O-DHN) satisfies
the assumptions stated about (G).

To reformulate (O-DHN) as (G), we associate the set of variables u from Chapter 2
to Pp, Pw, Pg, and qad for all ad ∈ Ad. As elaborated in Section 2.1, u models the
exact decisions to be taken for the underlying application, which, in the case of DHN
operation, are the controls of the system. Indeed, once these variables are fixed,
it holds that the remaining constraints allow for a unique state of the system; see,
e.g., Lagnese et al. (1994), Leugering et al. (2017), or Krug et al. (2021a) for results
on well-posedness of similar graph-structured systems.

Next, the w variables of Chapter 2 contain all the remaining variables
of (O-DHN). They model the state of the system and are thus uniquely deter-
mined by the constraints of the optimization problem if u is fixed. Then, by set-
ting wa = (ea(0), ea(La), va)

⊤ for all a ∈ Ap we can rewrite the internal energy
density equation of (3.2) as ha(u,wa) = 0 for all a ∈ Ap. To complete the model-
ing, we define wα+1 as the vector of all the remaining variables inside of w, such
that w =

(
w⊤
1 , . . . , w

⊤
α , w

⊤
α+1

)⊤ holds. Then, by simply setting J = Ap and rewriting
all the remaining constraints as gi(u,w) = 0 indexed over i ∈ I, we obtain (O-DHN)
in the structure of (G).

Furthermore, we show that (O-DHN) cast in the form of (G) fulfills the assump-
tions made in Section 2.1. Assumption 1 is clearly satisfied as ha models an ODE
and hence cannot be described with a analytical expression. For a ∈ Ap, we se-
lect a discretization scheme and a step size ∆xa, yielding equidistant discretization
points 0 = x0 < · · · < xna = La. By introducing za = (ea(x1), . . . , ea(xna−1))

⊤ we
can denote the resulting discretized equations as h̃a,k(u,wa, za) = 0 for k ∈ K(a) ⊆ N,
where the expression of h̃a,k and the expression of |K(a)| arise from the used dis-
cretization scheme. Therefore, if we adequately choose a discretization scheme and
the value of na w.r.t. the convergence of numerical solutions to exact solutions of
ODEs, then Assumption 2 holds. As a result, we apply the techniques presented in
Chapter 2 on (O-DHN).

Finally, we draw attention to the fact that, in what follows, u, wa, za, ha, and h̃a,k
now refer to the case of stationary DHN operation.

3.3 Network Expansion

This section concerns the results of [MR1], where we consider expansion decision
making for tree-shaped DHNs. The DHN expansion literature can be categorized
depending on the approach that is used. The first category concerns scenario-based
stationary mixed-integer linear models, which usually induce a significant amount of

26



3.3 Network Expansion

integer variables to linearize the nonlinear constraints that model the water physics;
see, e.g., Bracco et al. (2013), Haikarainen et al. (2016), and Bordin et al. (2016).
The second category concerns mixed-integer nonlinear models, see e.g. Blommaert
et al. (2018). As a consequence of the nonlinearity of the constraints, the resulting
problems are harder to solve. Almost all papers of this category use heuristics to
find solutions; see, e.g., Guelpa et al. (2018) and Mertz et al. (2017). This is the
category [MR1] belongs to as well. We propose a stationary nonconvex mixed-integer
nonlinear district heating network expansion model for tree-shaped networks that
accurately takes into account pressure as well as thermal losses. In contrast to the
aforementioned papers, we reach global optimal solutions by using global optimization
solvers.

To describe the results of [MR1], we first specify the expression of the energy
density state equation (3.2) and introduce two additional model simplifications. Then,
under these simplifications, we extend (O-DHN) with expansion decision variables
and constraints. Furthermore, we address the approximation of the ha functions
by applying the technique presented in Section 2.2 resulting in a model of type (F).
Finally, with the resulting expansion decision model, we present the results and
conclusions of [MR1].

3.3.1 State Equation Specification and Model Simplifications

First, we specify (O-DHN) by refining the description of state equation (3.2). Hence,
we assume that ζ in Equation (3.3) is linear and depends on the specific heat
capacity cp of water. This expression is commonly used in the case of nonisothermal
gas flow as discussed in Domschke et al. (2021) and reads

ea(x) = cpρTa(x). (3.14)

Note that (3.14) is a coarse linear approximation of the real state of the system.
Additionally, it allows to eliminate either the variable e or the variable T in the
description of (O-DHN). In the following, we will hence only consider variable T
because it yields solutions that can be easily interpreted. Moreover, by using state
equation (3.14) we may rewrite Equation (3.2) in the form

0 = va
dTa
dx

(x)− λa
2cpDa

|va|v2a +
4Ua

cpρDa
(Ta(x)− TW). (3.15)

Furthermore, we state two simplifications of the underlying physics that make the
expansion model more tractable for optimization solvers. First, we assume that, for
small velocities va, the friction term λa

2cpDa
|va|v2a in Equation (3.15) can be neglected,

yielding

0 = va
dTa
dx

(x) +
4Ua

cpρDa
(Ta(x)− TW). (3.16)

The ODE of Equation (3.16) has an analytical solution as presented in the
following lemma.
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Lemma 1 (Lemma 1 in [MR1]) The ODE (3.16),

va
dTa
dx

(x) +
4Ua

cpρDa
(Ta(x)− TW) = 0,

has the solution

Ta(x; va) =

{
TW, if va = 0,

Ce
− 4Uax

cpρDava + TW, if va > 0,
(3.17)

where C ∈ R is a constant. The solution is continuous for all x ∈ [0, La] and
all va ≥ 0.

A valid expression for C is easily obtained using the initial condition at Ta(0).
Replacing C by this expression then results in a constraint linking Ta(0) and Ta(La).
However, this function is defined by a case distinction (va = 0 vs. va ̸= 0). The
integration of (3.17) into a model that can be solved by an optimization solver requires
additional variables and constraints that lead to further computational challenges.
In particular, it is not possible to simply include the second case of the definition
standalone in the model since the resulting constraint would not be well-defined in all
cases in which an arc has a zero flow. As will be discussed in the next section, this is,
e.g., the case for all candidate pipes that are not built. To tackle this problem, we will
derive an approximation hfit

a in Section 3.3.3 so that Equation (3.17) is approximately
captured via the equality constraint hfit

a (u,wa, λ
∗
a) = 0.

The second and last assumption that we make is that the DHN has exactly
one depot and that both the forward and backward flow network are tree-shaped.
Consequently, a unique forward flow path exists from the depot to any consumer.
Similarly, it means that a unique backward flow path exists from any consumer to
the depot. If this is the case, the sign of all mass flow variables qa can be inferred
from the network structure. Thus, by only considering tree-shaped networks, we
simplify the modeling of the DHN’s physics and make (O-DHN) less computationally
challenging compared to the original formulation.

Then, if we assume that the arcs are oriented in the inferred flow direction and
if we replace e by T through the use of state equation (3.14), the set of energy
conservation constraints (3.6) and (3.7) simplify to

∑

a∈δin(u)
cpTa(La)qa =

∑

a∈δout(u)

cpTa(0)qa,

Tu = Ta(0), a ∈ δout(u).

(3.18)

This means that we eliminate the need for the complementarity pair (βa, γa) described
in the set of Equations (3.7).

3.3.2 Modeling the Expansion Decisions

Model (O-DHN) is now enhanced so that a point originating from its feasible domain
results in expansion decisions regarding a set of candidate pipes and consumers. With
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this in mind, we split the set Ac in Ae
c, the set of existing consumers, and Ac

c, the
set of candidate consumers. Similarly, we split the set Ap in Ae

p, the set of existing
pipes, and Ac

p, the set of candidate pipes. Naturally it holds that Ae
c ∪ Ac

c = Ac
and Ae

p ∪ Ac
p = Ap. We refer to Table 1 of [MR1] for a detailed arc and node set

summary. Moreover, Figure 1 of [MR1] shows a schematic of the graph representation
for a small DHN example with expansion extensions.

Next, we introduce the expansion decision variable xa ∈ {0, 1} that models if
arc a ∈ Ac

c ∪Ac
p is built or not. Naturally, the set of variables u that is specified

in Section 3.2.7 now also includes the expansion variables xa as they model exact
decisions that are linked to the underlying application.

Furthermore, we adapt the constraints of (O-DHN) to account for expansion
decisions. First, we replace the mass flow bounds (3.10) for a ∈ Ac

p ∪Ac
c by

0 ≤ qa ≤ xaq+a . (3.19)

Thus, they force qa = 0 for a ∈ Ac
p ∪ Ac

c if xa = 0. To avoid changing the set of
feasible states of the system, the consumer power consumption constraint (3.9a) and
the momentum equation (3.1) have to be deactivated if xa = 0 for candidate arcs.
Therefore, we replace (3.9a) for all a ∈ Ac

c by

xaPa = qacp (Ta(La)− Ta(0)) (3.20)

and replace (3.1) for all a ∈ Ac
p by the big-M reformulation

pv − pu + Lagρh
′
a + λa

|va|vaρLa

2Da
≤ (1− xa)M1

a , (3.21a)

pv − pu + Lagρh
′
a + λa

|va|vaρLa

2Da
≥ −(1− xa)M2

a (3.21b)

with suitably large constants M1
a , M2

a as discussed in Section 2.6 of [MR1].
Furthermore, we add valid inequalities to the expansion model. Again, we refer to

Section 2.7 of [MR1] for a detailed discussion. For a ∈ Ac
p ∪Ac

c, the valid inequalities
read

xa ≤ xā, ā ∈ P (a), (3.22)

where P (a) ⊆ A represents the set of arcs created by the unique forward and backward
flow paths from arc a to the existing network.

Finally, the objective function is modified to take the expansion decisions into
account. It reads

∑

a∈Ac
c

Pawπxa −
∑

a∈Ac
p∪Ac

c

C inv
a xa − w (CpPp + CwPw + CgPg) , (3.23)

where w = 24 h and π, C inv
a stand for the energy price per kWh and the daily annuity

costs of arc a, respectively.
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3.3.3 An Internal Energy Density Equation Approximation

The closed-form reformulation of ha presented in (3.17) cannot be used as a constraint.
As indicated previously, its case-distinction and numerical ill-conditioning for positive
values of va close to zero make it badly suited for optimization solvers. However,
the expression of Equation (3.17) does form a good candidate for applying the ideas
of Section 2.2. Consequently, we propose to replace the closed-form expression
of ha by a fitted surrogate function hfit

a that is better suited for global optimization
solvers. Hence, we use a modified multivariate polynomial ansatz function to replace
Equation (3.17). Let d be the degree of the considered polynomial and let αklm

denote a fitting parameter defined for all Θd, where

Θd :=
{
(k, l,m) ∈ N3 : k ̸= 0 and k + l +m ≤ d

}
.

Then, we set λa := {αklm : (k, l,m) ∈ Θd} resulting in the ansatz function

hfit
a (u,wa, λa) =

∑

(k,l,m)∈Θd

αklm v
k
a Ta(0)

l Ta(La)
m + Ta(La)− TW. (3.24)

When va = 0 holds, Equation (3.24) is constructed so that the closed-form con-
straint hfit

a (u,wa, λa) = 0 reduces to Ta(La) = TW. This property ensures that the
resulting optimization model stays feasible even if a candidate arc is not built. By
doing so, we highlight the strength of the approach presented in Section 2.2, i.e.,
the flexibility in terms of the ansatz function allows to keep specific features of func-
tion ha. Additionally, outer approximations of monomial and bilinear terms have been
thoroughly studied and are part of most global optimization solvers; see, e.g., Misener
and Floudas (2014) for a summary of the outer approximations implemented in
the ANTIGONE solver. As a consequence, global optimization solvers are built to
efficiently tackle equations of the form (3.24), making the proposed ansatz function
well suited for the expansion application that is considered.

Finally, the ansatz function of Equation (3.24) is fitted as discussed in Section 2.2
with a quadratic loss function and a large set of samples that satisfy Equation (3.17).
The interested reader is referred to Section 3 of [MR1] for a detailed discussion about
the approximation accuracy of the resulting fitted function.1

1In [MR1], fapprox(va, Ta(0), Ta(La)) is the notation used for hfit
a (u,wa, λa).
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3.3.4 Expansion Optimization Problem

With the extensions of Sections 3.3.1, 3.3.2, and 3.3.3 we summarize the stationary
district heating network expansion optimization problem

min objective: (3.23),
s.t. momentum: (3.1) or (3.21),

internal energy density approximation: (3.24),
mass conservation: (3.4),
pressure continuity: (3.5),
energy conservation: (3.18),
depot constraints: (3.8),
consumer constraints: (3.9) with (3.9a) or (3.20),
massflow bounds: (3.10) or (3.19),
nodal and power bounds: (3.11) and (3.12),
valid inequalities: (3.22).

(E-DHN)

We remark that (E-DHN) is a special case of (F) described in Chapter 2 for stationary
expansion decision making in tree-shaped district heating networks.

Furthermore, we highlight that (E-DHN) belongs to the nonconvex MINLP class.
Consequently, global MINLP solvers are needed for solving this problem to global
optimality.

3.3.5 Numerical Results

To study (E-DHN), we use the AROMA network from Krug et al. (2021b) and remove
one arc in the forward and backward flow networks that make it a tree-shaped network.
Five candidate consumers are added to the optimization problem. Costs and prices
are taken from Nussbaumer and Thalmann (2016) and TWL (2020), respectively. For
specifications of hardware, software, and the test instances, we refer to Section 4.1
and 4.2 of [MR1].

We first discuss the results of the base test case shown in Figure 3.2. Despite that
the cost of pressure increase is the highest among all costs, it can be observed that a
non-negligible pressure difference is induced at the depot of the network. This is a
consequence of the thermal energy equation (3.17) that has decreasing thermal losses
when the velocity va is increased via a pressure difference.

Through a sensitivity analysis of the instance shown in Figure 3.2 that is carried
out in Section 4.3 of [MR1], we identify the three main parameters that drive the
investment decisions:

• First, the estimated power demand of the candidate consumer directly influences
the objective function (3.23). In fact, in (E-DHN), the resulting consumer
payment is the only way of reimbursing the investment costs incurred to
establish a connection with the consumer. Consequently, this motivates the
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F0

p = 7.66
T = 391.54

F1

p = 7.12
T = 391.33

F2

p = 6.99
T = 391.15

F3

p = 6.6
T = 390.77
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Figure 3.2: Illustration of the solution of Problem (E-DHN) on the modified AROMA
network. Solid arcs represent existing and newly constructed candidate pipes, whereas
dashed arcs represent candidate pipes that are not built. The figure also provides
parts of the physical solution (T in K and p in bar at nodes and q in kg s−1 on arcs).

accurate estimation of consumer power demand, which is a research topic on
its own, see, e.g., Werner (2017).

• Second, as can be seen in Equation (3.23), a candidate consumer who is located
far away from the network incurs larger trench digging and pipe placement
costs for connecting him to the network. Thus, the distance of a candidate
consumer to the existing network directly increases the value of the objective
function when an expansion decision is made.

• Finally, for some consumers, the heat transfer coefficients Ua of the pipes that
connect them to the depot are what makes them financially attractive for the
network operator. Indeed, higher thermal losses implies that more heat is
needed for the transport of water to the candidate consumers, i.e., a larger
amount of money is spent by the network operator to satisfy the same demand.
Moreover, this result highlights the importance of the expansion model that
we present. We accurately take into account the influence of thermal losses
induced by the network of pipes on the expansion decisions.

The interested reader is referred to Section 4.3 of [MR1] for a more detailed description
of the results.

3.4 Realistic Solutions

We now present the content of [MR2] that focuses on obtaining accurate solutions
of (O-DHN) via adaptive refinement algorithms. Interestingly, the literature on
mathematical optimization for DHN operation is rather sparse. For closed-loop
control strategies of instationary variants of the problem, we refer to Sandou et
al. (2005), Verrilli et al. (2017), Benonysson et al. (1995), and to Krug et al. (2021b)
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for open-loop optimization approaches. The interested reader is referred to Section 1
of [MR2] for more DHN optimization references.

In the following, we begin by specifying the internal energy density state equation
that is kept general in the description of (O-DHN). Then, we present a model catalog
for approximating the internal energy density equation of (O-DHN). This yields a
reformulation that is in line with the description of (SD) in Chapter 2. With this new
description at hand, Algorithm 1 discussed in Section 2.4 is applied and extended
with a coarsening and model down-switching step. Finally, the numerical results
presented in [MR2] are summarized.

To keep this extended summary self-contained and for the ease of presentation,
we present the ideas of [MR2] by relying on the notation of Chapters 2 and 3.

3.4.1 State Equation Specification

As for the expansion decision model, we specify the expression of the internal energy
density state equation (3.2). We consider the state equation proposed by Hauschild
et al. (2020), i.e.,

Ta = θ2(e
∗
a)

2 + θ1e
∗
a + θ0 (3.25)

with

e∗a :=
ea
e0
, e0 := 109 Jm−3,

θ2 = 59.2453K, θ1 = 220.536K, θ0 = 274.93729K.

Equation (3.25) provides a more detailed second-order polynomial relationship be-
tween e and T in comparison to state equation (3.14). Moreover, it can be shown
that state equation (3.25) combined with ODE (3.2) has an analytical solution.

Lemma 2 (Lemma 1 in [MR2]) The differential equation (3.2), i.e.,

0 = va
dea
dx
− λa

2Da
ρ|va|v2a +

4Ua

Da
(Ta − TW)

with initial condition
ea(0) = e0a > 0

and state equation (3.25) has the exact solution

ea(x) =

√
β2 − 4αγ

2α

1 + exp

(
x
√

β2−4αγ
ζ

)(
2αe0a+β−

√
β2−4αγ

2αe0a+β+
√

β2−4αγ

)

1− exp

(
x
√

β2−4αγ
ζ

)(
2αe0a+β−

√
β2−4αγ

2αe0a+β+
√

β2−4αγ

) − β

2α

with
α := − 4Uθ2

Da(e0)2
, β := −4Uθ1

Dae0
, ζ := va,

γ :=
λa
2Da

ρ|va|v2a −
4U

Da
(θ0 − TW),

if 4αγ − β2 < 0 is satisfied.
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Interestingly, we note that the condition 4αγ − β2 < 0 is always satisfied for usual
pipe parameters.

The analytical solution derived in Lemma 2 could, in principle, be used as
a constraint in a nonlinear optimization model. However, the fractions, square
roots, and exponential functions would lead to a badly posed problem resulting in
a significant numerical challenge even for state-of-the-art solvers. Additionally, this
analytical solution yields a specific behavior that cannot easily be mimicked by a
fitted approximation function. As a consequence, no guarantee of obtaining ε-feasible
solutions to (O-DHN) exists. Hence the ideas of Section 2.2 cannot be used anymore
if accurate solutions are needed.

Therefore, we focus on applying the generalized adaptive refinement algorithm
ideas of Section 2.4 for the case of stationary DHN operation. The next subsections
hence specify the components that we consider in Algorithm 1.

3.4.2 Model Catalog

The expression of the internal energy density equation (3.2) has a high amount of
nonlinear terms. When discretized and considered as a constraint this equations would
induce varying steep gradients that can make the resulting optimization problems
hard to solve. As described in Section 2.4.1, we create a set of model levels with
decreasing amount of nonlinear terms to cope with this issue. They read

0 = va
dea
dx
− λa

2Da
ρ|va|v2a +

4Ua

Da
(Ta − TW), (M1)

0 = va
dea
dx

+
4U

Da
(Ta − TW), (M2)

0 = ea(La)− ea(0), (M3)

where (M1) and (M2) are complemented with state equation (3.25). The high-
est model level (M1) equals Equation (3.2). Then, by sequentially dropping
terms λa/(2Da)ρv

2
a|va| and 4Ua/Da(Ta− TW), respectively, we get model levels (M2)

and (M3). As in Section 2.4.1, let L be the set that captures the different levels,
i.e., L := {(M1), (M2), (M3)}. In addition, Corollary 1 of [MR2] gives the analytical
solution of (M2). We do not include this corollary here to keep the extended summary
short.

Since we follow the approach presented in Section 2.4, we need a set of func-
tions h̃θa,k with k ∈ K(a), that can replace hθa for all a ∈ Ap and all θ ∈ L. Conse-
quently, we introduce an equidistant discretization Γa of the spatial domain [0, La]
using the discretization points xk ∈ Γa such that 0 = x0 < x1 < · · · < xna = La with
the step size ∆xa = xk+1 − xk for k = 0, 1, . . . , na − 1. We use the implicit mid-point
rule to discretize the separate levels of the catalog, i.e., Systems (M1)–(M3), as well
as the state equation (3.25). Using the abbreviation eka := ea(xk), we obtain the
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associated discretized model levels

0 = va

(
eka − ek−1

a

∆x

)
− λaρ

2Da
|va|v2a +

4Ua

Da

(
Ta(e

k
a, e

k−1
a )− TW

)
, (D1)

0 = va

(
eka − ek−1

a

∆x

)
+

4U

Da

(
Ta(e

k
a, e

k−1
a ),−TW

)
(D2)

0 = ea(La)− ea(0), (D3)

where (D1) and (D2) hold for k = 1, . . . , na. The set of equations (D1) and (D2) are
complemented with the discretized state equation (3.25), i.e.,

Ta(e
k
a, e

k−1
a ) :=

θ2
4e20

(
eka + ek−1

a

)2
+

θ1
2e0

(
eka + ek−1

a

)
+ θ0 (3.26)

for all k = 1, . . . , na.

3.4.3 Adaptive Optimization Problem

The new discretized model level equations (D1)–(D3) yield the adaptive optimization
problem for stationary DHN operation2

min objective: (3.13),
s.t. momentum: (3.1)

internal energy density: (3.26) and (D1), (D2), or (D3),
mass conservation: (3.4),
pressure continuity: (3.5),
energy conservation: (3.6) with (3.7),
depot constraints: (3.8),
consumer constraints: (3.9),
bounds: (3.10)–(3.12).

(A-DHN)

This model is the equivalent of (SD) in Chapter 2. Because (O-DHN) is a special
case of (G) and since (A-DHN) also is a special case of (SD), we can apply the ARA
presented in Section 2.4.

Furthermore, we highlight that (A-DHN) belongs to the class of nonconvex
nonlinear optimization problem with complementarity constraints. Since we want to
obtain accurate solutions for realistic networks we will not consider global optimization
solvers as their solution time does not scale well with the size of the resulting models.
In fact, we use generic nonlinear solvers that do not yield optimality guarantees when
applied to our problem. Nevertheless, in practice, their use does result in good-quality
solutions for the sequence of problems that are solved.

2In [MR2], (NLP) is the abbreviation used for (A-DHN).
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3.4.4 Components of the Algorithm

The details about the components of the ARA presented in Section 2.4 applied
to (O-DHN) are now discussed.

First, we specify the exact error measures that quantify the infeasibility of a
solution of (A-DHN) w.r.t. the domain of (O-DHN). Suppose that (A-DHN) is solved
and let (ũ, w̃) ∈ U ×W be the resulting solution in which ẽa(xk) and ṽa are the value
of the internal energy density at point xk ∈ Γa of arc a ∈ Ap and the value of the
velocity of arc a ∈ Ap, respectively.3 In addition, for x ∈ [0, La], let ϵθa(x) be the result
of evaluating the right-hand side of the analytical solution to Constraints (M1), (M2),
or (M3) with ea(0) = ẽa(0) and va = ṽa. Then, the reformulation of the exact total
error (2.4) over variable ea(La) yields

νa(ũ, w̃) := |ϵ1a(La)− ẽa(La)|. (3.27)

However, let Γ0 be a predetermined discretization grid Γ0 = {x0, . . . , xr}
with x0 = 0 and xr = La. Then, we remark that in [MR2] the exact total error
is defined as

νa(ũ, w̃) := ∥ϵ1a(Γ0)− ẽa(Γ0)∥∞, (3.28)

where ẽa(Γ0) := (ẽa(x0), . . . , ẽa(xr))
⊤ and ϵθa(Γ0) := (ϵθa(x0), . . . , ϵ

θ
a(xr))

⊤.4 Never-
theless, Equation (3.28) gives an upper bound on Equation (3.27) because xr = La is
always part of the chosen discretization. Moreover, it holds by construction that both
definitions are equal when Γ0 = {0, La}. The definition of (3.28) is motivated by the
theory of numerical solutions to Cauchy problems. In fact, convergence results of nu-
merical solutions to exact solutions of ODEs, see, e.g., Süli and Mayers (2003, p. 318),
are used in [MR2]. These convergence properties allow to prove finite termination of
the ARA applied to (O-DHN) at ε-feasible points.

Next, we introduce the exact model error and the exact discretization error as
in [MR2]:

νm
a (ũ, w̃) := ∥ϵ1a(Γ0)− ϵℓaa (Γ0)∥∞, (3.29)

νd
a (ũ, w̃) := ∥ϵℓaa (Γ0)− ẽa(Γ0)∥∞. (3.30)

Similar to νa(ũ, w̃) it holds that the right-hand side of Equations (3.29) and (3.30)
bound the right-hand side of Equations (2.6) and (2.8) adapted for (A-DHN) from
above, respectively.

As the definition of the error estimates requires additional notation and as they
are not necessary for understanding this extended summary we omit their description.
In short, both estimates are obtained via asymptotic expansions of numerical solutions
as described in Stoer and Bulirsch (2002, p. 481). Hence, we refer to Section 3.2
of [MR2] for the definition and discussion of the model error estimate ηm

a (ũ, w̃) and
the discretization error estimate ηd

a(ũ, w̃). Naturally, in [MR2], we prove that νm
a (ũ, w̃)

and νd
a (ũ, w̃) are bounded from above by the estimates ηm

a (ũ, w̃) and ηd
a(ũ, w̃) when

3In [MR2], y is the notation used for (ũ, w̃).
4In [MR2], eℓa(Γ0; ∆xi) is the notation used for ẽa(Γ0) and eθa(Γ0) is the notation used for ϵθa(Γ0).
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(A-DHN)

(ũ, w̃) ∈ U ×W

∆xa, ℓa

R,U

C,D

Figure 3.3: State diagram of Algorithm 1 tailored to return ε-feasible controls
for stationary DHN operation. The state on the right-hand side is split into an
approximation accuracy improvement phase, i.e., corresponding to the creation
of R,U , and a model simplification phase, i.e., corresponding to the creation of C,D.

the discretization step size ∆xa tends to zero, i.e., ∆xa → 0. By construction, it
also holds that the set of Inequalities (2.11) are valid. Hence, we define the total
error estimate ηa(ũ, w̃) exactly as in Equation (2.12). This then completes the error
measure definitions of [MR2] explained with the concepts of Section 2.4.2.

For the case of marking and switching strategies, we restrict ourselves to the
concepts introduced in Section 2.4. Hence, we refer the interested reader to Section 4.1
of [MR2] for a detailed description. In summary, the switching strategies that we
use are the same as Mehrmann et al. (2018b). The marking strategies are based
on Dörfler’s rule, see Nochetto et al. (2009, p. 93), and are also used in Mehrmann
et al. (2018b).

We now draw our attention to the fact that, as discussed in Section 2.4.7, a
coarsening step and a model down-switching step are added to the algorithm with
associated marking and switching strategies. Moreover, w.l.o.g., the refinement and
coarsening switching strategies take effect on the discretization stepsize ∆xa instead
of the dimension na.

3.4.5 Adaptive Refinement Algorithm and Finite Termination

The state diagram in Figure 3.3 describes the ARA of [MR2] by replacing the concepts
and notation of Chapter 2 in Figure 2.3 with the concepts and notation of this chapter.
Moreover, the extensions that we consider in this chapter, i.e., a coarsening and
down-switching step, are added to the schematic.

We now discuss the functioning of the ARA applied on (O-DHN) by means of
Figure 3.3. Generally speaking, the ARA of this chapter and the ARA of Chapter 2
are similar. Indeed, for each iteration of the algorithm, a version of (A-DHN) is solved
and the resulting solution (ũ, w̃) ∈ U ×W characterizes how the the next (A-DHN)
is designed. Then, subsets of Ap are created such that the values of ∆xa and ℓa are
changed for their elements. Hence, meaning that we go back to solving (A-DHN),
where the entire process can start again.

Nevertheless, a coarsening step and a model down-switching step are added to
the algorithm to keep the size of the subsequent instances of (A-DHN) solvable in
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Algorithm 2: Adaptive optimization algorithm extended with a coarsening
and down-switching phase

Input: error tolerance ε > 0, marking strategies σR, σU , σC , σD, improvement
rules ξR, ξU , ξC , ξD

Output: ε-feasible solution (u,w) of (O-DHN)

1 foreach a ∈ Ap do
2 Initialize ℓ0a and ∆x0a

3 (ũ, w̃, z̃)0 ← Solve (A-DHN)0

4 if (ũ, w̃)0 is ε-feasible then
5 return (u,w)← (ũ, w̃)0

6 for k = 1, 2, . . . do
7 for j = 1, 2, . . . , µ do
8 Compute sets Rk,j ,Uk,j according to σR, σU
9 foreach a ∈ Rk,j do

10 Increase ∆xk,ja according to ξR
11 foreach a ∈ Uk,j do
12 Switch-up ℓk,ja according to ξU
13 (ũ, w̃, z̃)k,j ← Solve (A-DHN)k,j

14 if (ũ, w̃)k,j is ε-feasible then
15 return (u,w)← (ũ, w̃)k,j

16 Compute sets Ck,j ,Dk,j according to σC , σD
17 foreach a ∈ Ck,j do
18 Increase ∆xk,ja according to ξR
19 foreach a ∈ Dk,j do
20 Switch-down ℓk,ja according to ξD
21 (ũ, w̃, z̃)k,j ← Solve (A-DHN)k,j

22 if (ũ, w̃)k,j is ε-feasible then
23 return (u,w)← (ũ, w̃)k,j

a reasonable amount of time. The right-hand side of the schematic in Figure 3.3
consequently describes the subset selection state of the ARA that is split in two
phases. The first phase corresponds to the improvement of the accuracy of (A-DHN)
and is discussed in Chapter 2. The second phase is associated with reducing the
computational challenge of (A-DHN) and creates the coarsening set C and the model
down-switching set D. Here, the discretization step size ∆xa of each element in C is
increased whereas the model level ℓa of each element in D is switched down.

Finally, once an ε-feasible solution is reached, the algorithm stops and returns
the solution.
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To complete the current section, Algorithm 2 extends Algorithm 1 by adding the
specifications described in the previous paragraph. The approximation improvement
phase is shown in Lines 8–12 of Algorithm 2 and is scheduled to happen µ times
more compared to the approximation simplification phase shown in Lines 16–20
of Algorithm 2. The parameter µ, also referred to as the safeguard parameter,
ensures that the approximation accuracy keeps augmenting as long as no ε-feasible
solution is found. In fact, µ is part of the finite termination conditions and therefore
influences the time required to achieve termination of the algorithm. More information
about the safeguard parameter can be found in Mehrmann et al. (2018b, p. 789).
Naturally, (A-DHN)k,j is solved and the resulting solution is checked for ε-feasibility
as is shown in Lines 13–15 and Lines 21–23 of Algorithm 2.

We now state a series of lemmas that are used to prove finite termination of
Algorithm 2 at ε-feasible solutions given a set of conditions on the parameters of
the algorithm. Before stating the lemmas, we remark that ΘR, ΘC , ΘU , and ΘD are
parameters that influence the marking strategies that we consider. We omit their
description and refer the interested reader to Section 4.1 of [MR2] for more details.

Lemma 3 (Lemma 2 in [MR2]) Suppose that the model level ℓa ∈ {1, 2, 3} is fixed
for every pipe a ∈ Ap. Let the resulting set of model levels be denoted by M. Suppose
further that ηa(ũ, w̃) = ηd

a(ũ, w̃) holds in (2.12) and that every (A-DHN) is solved to
local optimality. Consider Algorithm 2 without applying the model switching steps in
Lines 12 and 20. Then, the algorithm terminates after a finite number of refinements
in Line 10 and coarsenings in Line 18 with an ε-feasible solution w.r.t. model level
set M if there exists a constant C > 0 such that

1

4
ΘRµ ≥ ΘC + C (3.31)

holds and if the step sizes of the initial discretizations are chosen sufficiently small.

Lemma 4 (Lemma 3 in [MR2]) Suppose that the discretization stepsize ∆xa is
fixed for every pipe a ∈ Ap. Suppose further that ηa(ũ, w̃) = ηm

a (ũ, w̃) holds in (2.12)
and that every (A-DHN) is solved to local optimality. Consider Algorithm 2 without
applying the discretization refinements in Line 10 and the coarsening step in Line 18.
Then, the algorithm terminates after a finite number of model switches in Lines 12
and 20 with an ε-feasible solution w.r.t. the step sizes ∆xa, a ∈ Ap, if there exists a
constant C > 0 such that

ΘUµ ≥ τΘD|Ap|+ C. (3.32)

Lemma 5 (Lemma 4 in [MR2]) Let (ũ, w̃, z̃)µ and (ũ, w̃, z̃)µ+1 be the solution of
the optimization problem before and after a refinement or coarsening step, respectively.
Let ηd

a(ũ, w̃) and ηm
a (ũ, w̃) be the discretization and model error estimate for a given

solution (ũ, w̃, z̃) of (A-DHN). Then, if

ηd,µ
a (ũ, w̃)≪ ηm,µ

a (ũ, w̃)

is satisfied, it holds that
ηm,µ+1
a (ũ, w̃) = ηm,µ

a (ũ, w̃). (3.33)
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Assumption 3 (Assumption 1 in [MR2]) Let (ũ, w̃, z̃)µ and (ũ, w̃, z̃)µ+1 be the
solution of the optimization problem before and after a model up- or down-switching
step, respectively. Moreover, let us denote with λµ and λµ+1 the corresponding
sensitivities. Then, there exists a constant C > 0 with ∥λµ − λµ+1∥ ≤ C.

Lemma 6 (Lemma 5 in [MR2]) Let (ũ, w̃, z̃)µ and (ũ, w̃, z̃)µ+1, respectively, be
the solution of the optimization problem before and after a model up or down switching
step. Let ηd

a(ũ, w̃) and ηm
a (ũ, w̃) be the discretization and model error estimate for

a given solution (ũ, w̃, z̃) of (A-DHN). Finally, suppose that Assumption 3 holds.
Then,

ηm,µ+1
a (ũ, w̃) = ηm,µ

a (ũ, w̃) (3.34)

holds.

Next, we state the finite termination theorem of Algorithm 2 that is proven with
Lemmas 3–6.

Theorem 1 (Theorem 1 in [MR2]) Suppose that ηd
a ≪ ηm

a for every a ∈ Ap and
that every (A-DHN) is solved to local optimality. Moreover, suppose that Assumption 3
holds. Then, Algorithm 2 terminates after a finite number of refinements, coarsenings,
and model switches in Lines 10, 18, 12, and 20 with an ε-feasible solution w.r.t. the
reference problem if there exist constants C1, C2 > 0 such that

1

4
ΘRµ ≥ ΘC + C1 and ΘUµ ≥ τΘD|Ap|+ C2

hold.

Finally, we remark that in [MR2] the parameters ΘR, ΘC , ΘU , ΘD, µ, and τ are
indexed over the parameter k, the outer loop iteration index of Algorithm 2. This
makes the conditions in Lemma 3, Lemma 4, and Theorem 1 iteration-specific and
thus allows for modifying these parameters, if necessary, over the course of the
iterations. We omit this notation here on purpose to keep the explanation clear.

3.4.6 Numerical Results

Algorithm 2 is tested on the AROMA and STREET networks originating from Krug
et al. (2021b). Power costs are again taken from Nussbaumer and Thalmann (2016).
The interested reader is referred to Section 5.1, 5.2, and 5.3 of [MR2] for the detailed
discussion of the hardware setup, the software setup, the test instances, and the
parameterization of the algorithm. In the following, we summarize the numerical
results via a set of key points:

• In practice, the algorithm works as requested with both the exact errors and
the error estimates on all considered instances. Therefore, it finitely terminates
with an ε-feasible solution. Figure 3.4 highlights this by displaying the error
decrease of the algorithm over the course of the iterations for both error
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Figure 3.4: Error decrease of the ARA applied on the STREET network instance for
the error estimates (left) and exact errors (right).
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Figure 3.5: Proportion of pipes in each model level set of the ARA applied on the
STREET network instance with error estimates (left) and exact errors (right).

measures. Moreover, for some instances, the algorithm is able to obtain high-
detail solutions that state-of-the-art solvers cannot compute from scratch when
the same level of detail is considered.

• We demonstrate that the use of error estimates, in the case of stationary DHN
operation, results in similar behavior of the algorithm compared to the exact
error case. Moreover, as can be seen in Figure 3.4, it needs exactly the same
amount of iterations when the error estimates instead of the exact errors are used.
Therefore, this makes Algorithm 2 coupled with error estimates a useful tool
for obtaining ε-feasible solutions when exact error measures are not available.
However, as the error estimates upper bound the exact errors, they might result
in an overestimation of the discretization error or the model error. This can
lead to approximations of the functions ha that are too detailed. Figure 3.5
shows the proportion of pipes inside each model level set over the course of the
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iterations when error estimates and exact errors are used. The error estimates
overestimate the exact model error, hence, resulting in more pipes that reach
the highest model level when the algorithm terminates. Naturally, this results in
intermediate (A-DHN) problems that are harder to solve and can consequently
increase the time needed to reach an ε-feasible solution.

• The variable values (ũ, w̃)0and (ũ, w̃)kend , where kend denotes the index of the
last ARA iteration before ε-feasibility is reached, are strikingly different. This
is a consequence of the increasing approximation accuracy of the (A-DHN)k,j

that are solved in every iteration of the algorithm. Such a discrepancy in the
value of the solutions shows why we should always try to get physically accurate
solutions if the resulting controls shall be practically useful.
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4
Quantile-Constrained Optimization

Problems

We now present solution techniques for quantile-constrained optimization problems as
considered in [MR3]. First, quantile-constrained optimization problems and a scenario-
based approximation are discussed in Section 4.1. Then, in Section 4.2, commonly used
optimization techniques are developed for the problem that is considered. With the
help of these solution techniques, an adaptive scenario clustering algorithm (ASCA) is
presented in Section 4.3. This algorithm enhances the ideas of the ARA discussed in
Section 2.4 so that it terminates at a global optimal solution. Finally, all techniques
are tested and the computational results are compared in Section 4.4.

4.1 Optimization Problem and Approximation

This section describes quantile-constrained optimization problems and a tailored
scenario-based approximation of the original problem.

We consider a discrete set of indices t ∈ T = {1, . . . , T}. For each index t an
unknown stochastic cost vector ct ∈ RN exists. Let f be an application-specific
function. Furthermore, we merge all decision variables in a vector x ∈ X ⊆ RN .
Then, the quantile-constrained optimization problem reads

min
x

α
∑

t∈T
E[c⊤t x] + (1− α)

∑

t∈T
f (qt) ,

s.t. qt = Q[c⊤t x],

x ∈ X ⊆ RN ,

(Q)

where E, Q, and X model the expectation, the τ -quantile and the non-empty closed
set of feasible decisions that may also include integrality restrictions for all or some
of the variables, respectively. Here, contrarily to [MR3], variables qt are introduced
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4.1 Optimization Problem and Approximation

w.l.o.g., so that the link with Chapter 2 can be made. In fact, in [MR3], Q[c⊤t x] is
directly part of the objective function.

We shortly summarize two examples that can be modeled by (Q): A maintenance
planning problem in electricity networks as it was posed in the EURO/ROADEF
challenge 20201 and a variant of the classic portfolio optimization problem.

The first problem is the grid operation based outage maintenance planning problem
and consists in determining the start time of maintenance interventions in a high-
voltage transmission network over a given time horizon. More specifically, the goal is
to minimize a combination of the expectation and the quantile of the cost associated
with the schedule. The second problem is the portfolio optimization where the goal is
twofold: maximize the return and minimize the risk for which different measures have
been proposed; see, e.g., Gaivoronski and Pflug (2005), Mansini et al. (2003), Benati
and Rizzi (2007), and Lin (2009). Among them, the Value at Risk (VaR) or quantile
has attracted particular attention, namely because it is used to measure market risk
by regulators; see, e.g., Artzner et al. (1999) and the references therein. We refer
to Section 2.1 and 2.2 of [MR3] for a detailed description of both models and their
MILP approximation.

It often holds that the expression of Q[c⊤t x] is unknown or that it cannot be
described with finitely many variables. Therefore, an arguably good approximation
of (Q) can be obtained by sampling a finite set St of scenarios for all t ∈ T . In this
case, every s ∈ St is associated to a finite cost vector cst and a probability pst ∈ [0, 1]
such that

∑
s∈St

pst = 1. Then, for a specific t ∈ T , the expected value is approximated
via

E[c⊤t x] =
∑

s∈St

pst (c
s
t )

⊤x.

Furthermore, the quantile is approximated with the result of the following optimization
problem:

Q[c⊤t x] = min
qt,yst

qt (4.1a)

s.t. qt ≥ (cst )
⊤x+M s

t (y
s
t − 1), s ∈ St, (4.1b)

∑

s∈St

yst pt ≥ τ, (4.1c)

yst ∈ {0, 1}, s ∈ St, (4.1d)

Here, the big-M parameters are computed on an application-specific basis as high-
lighted in Sections 2.1 and 2.2 of [MR3].

We remark that for any t ∈ T , Problem (4.1) can be solved in polynomial time
if we are given a solution x ∈ X. More specifically, yst is first initialized to zero
for all s ∈ St. Then, the vector products (cst )

⊤x are sorted in increasing value over
all s ∈ St. Finally, the yst variables are fixed to one by iterating over the ordered
scenarios until (4.1c) is satisfied.

1See https://www.roadef.org/challenge/2020/en/index.php.
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4.2 Preliminary Solution Techniques

If the function f is nondecreasing and because both (Q) and (4.1) are minimization
problems, we can replace E[c⊤t x] and Q[c⊤t x] by the scenario-dependent approximations
yielding the scenario-based quantile-constrained optimization problem

min
x

α
∑

s∈St

pst (c
s
t )

⊤x+ (1− α)
∑

t∈T
f (qt)

s.t. qt ≥ (cst )
⊤x+M s

t (y
s
t − 1), t ∈ T , s ∈ St,∑

s∈St

yst pt ≥ τ, t ∈ T ,

yst ∈ {0, 1}, t ∈ T , s ∈ St,
x ∈ X ⊆ RN .

(S-Q)

We draw attention to the fact that (S-Q) is an MILP in the case of the maintenance
planning problem and the portfolio optimization problem. Indeed, the effect of
function f can, for both applications, be reformulated by a set of continuous variables
and linear inequalities.

4.2 Preliminary Solution Techniques

We now discuss the preliminary solution techniques that we propose. All tech-
niques of this section will be used to improve the behavior of the ARA applied to
quantile-constrained problems. It can be observed in (S-Q) that the scenario-based
approximation of Q[c⊤t x] has more influence on the size of the resulting optimization
problem compared to the approximation of E[c⊤t x]. Hence, the solution techniques
are designed to simplify the computational aspects related to the quantile part of the
objective function.

4.2.1 Valid Inequalities

Valid inequalities are commonly used to improve optimization solver performance;
see, e.g., Wolsey (1998).

We focus on obtaining lower bounds on the variable qt. For the ease of notation,
we omit the index t if there is no possible ambiguity. In what follows, we set p(S̄) :=∑

s∈S̄ p
s and ci(S̄) :=

∑
s∈S̄ p

scsi for S̄ ⊆ S. Moreover, for a subset S̄ ⊆ S, we define

bi(S̄) := min
w




∑

s∈S\S̄
csiw

s :
∑

s∈S\S̄
ws = τ − p(S̄), 0 ≤ ws ≤ ps, s ∈ S \ S̄



 .

This new notation allows to construct two lower bounds on q.
The first lower bound uses a strong-duality property and is a specific case of the

valid inequalities discussed in Kleinert et al. (2021) for bilevel optimization.
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4.2 Preliminary Solution Techniques

Proposition 1 (Proposition 1 in [MR3]) The following inequality is valid for
the quantile problem (4.1) for all subsets S̄ ⊆ S with p(S̄) < τ :

(
τ − p(S̄)

)
q ≥

N∑

i=1

(
bi(∅)− ci(S̄)

)
xi. (4.2)

Furthermore, it can be separated in polynomial time.

The second lower bound is based on a covering argument and is a generalization of
the idea proposed by Qiu et al. (2014) for the case where at most k linear inequalities
among n given ones are allowed to be violated.

Proposition 2 (Proposition 2 in [MR3]) The following inequality is valid for
the quantile problem (4.1) for all subsets S̄ ⊆ S with p(S̄) < τ :

(
τ − p(S̄)

)
q ≥

N∑

i=1

bi(S̄)xi. (4.3)

Moreover, Proposition 3 in [MR3] states that, when we fix p(S̄), the separation problem
for the inequalities in (4.3) is NP-hard even in the special case where ps = 1/|S| for
all s ∈ S, τ = k/|S| with k ∈ N+, and csi ∈ {0, 1}.

Finally, Proposition 4 in [MR3] shows that the inequalities in (4.3) are stronger
than the inequalities in (4.2). More specifically, for a predetermined S̄ ∈ S, Inequal-
ity (4.3) dominates Inequality (4.2). Consequently, this suggests to use the separation
procedure for Inequality (4.2) but to add the corresponding stronger inequality (4.3).

4.2.2 Clustering

In practice, when considering a set of scenarios St that allows for representative
approximation of Q[c⊤t x] for all t ∈ T , we obtain an optimization problem for which
state-of-the-art optimization solvers struggle to close the gap. If this is the case, we
can reduce the size of the resulting optimization problem by introducing a clustering
of all scenario sets. In addition, if we are given a solution x ∈ X, we observe that
when we solve (4.1) to optimality, at least one of the Constraints (4.1b) associated to a
specific scenario s̃ ∈ St will be binding. This means that the value of (cs̃t )⊤x equals qt
and shows that the other scenarios may not need to be considered individually
but can be clustered. In the following, we describe two ways of getting the cost
vectors associated to a cluster and highlight the properties of the resulting clustered
optimization problems.

More precisely, let Ct be a partition of St into Kt ≤ |St| nonempty clusters. Each
cluster γ ∈ Ct has a cost vector cγt and a probability pγt . The probability pγt of
cluster γ ∈ Ct is given by

pγt =
∑

s∈γ
pst ,

such that ∑

γ∈Ct
pγt = 1
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4.2 Preliminary Solution Techniques

holds.
We consider two strategies to associate a cost vector to a cluster of scenarios.

First, the average scenario clustering (ASC) associates with each cluster γ ∈ Ct a cost
vector cγt that is defined as follows:

(cγt )i =
1

|γ|
∑

s∈γ
(cγt )i, i ∈ N.

Let us indicate with CASC
t the corresponding clustering of scenarios. The ASC hence

creates a representative scenario by taking the centroid of the cluster, as is classically
done in the well-known MSSC problem, initially proposed in MacQueen (1967)
and Lloyd (1982).

Second, the minimum scenario clustering (MSC) associates with each cluster γ ∈ Ct
a cost vector cγt that is defined as

(cγt )i = min {(cγt )i : s ∈ γ} , i ∈ N.

Let us indicate with CMSC
t the corresponding clustering of scenarios.

With the the help of the ASC and the MSC, we can state a series of propositions
that provide tools for approximating the objective function value of any global optimal
solution of (S-Q) on St.

Proposition 3 (Proposition 7 in [MR3]) Let x∗ be an optimal solution of Prob-
lem (S-Q) solved on the scenario set St and let x∗ASC as well as x∗MSC denote optimal
solutions of Problem (S-Q) solved on the scenarios set CASC

t and CMSC
t , respectively.

For a vector x ∈ X, let v(x) and vMSC(x) denote the objective value of (S-Q) w.r.t. x
and defined over St and CMSC

t , respectively. Then,

vMSC(x
∗
MSC) ≤ v(x∗) ≤ min{v(x∗ASC), v(x

∗
MSC)}

holds.

Proposition 3 shows that there exists a way of bounding v(x∗) when we are given
a clustering of Ct of St for all t ∈ T . Additionally, it highlights that the clustering
described by Ct strongly influences the tightness of the bounds. As discussed in
Corollary 1 of [MR3], if vMSC(x

∗
MSC) equals min{v(x∗ASC), v(x

∗
MSC)} for a given

clustering, it holds that either x∗ASC or x∗MSC is an optimal solution of (S-Q) solved
on the scenario set St.

Furthermore, the MSC can be strengthened with the following proposition.

Proposition 4 Let CMSC
t be given for a specific t ∈ T and let γ be a cluster in CMSC

t

such that pγt > 1− τ holds. Then, in Problem (4.1) defining the quantile for t, it holds

yγt = 1

and the resulting inequality (4.1b) is dominated by the valid inequality (4.3)
for S̄ = St \ γ.
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4.3 Adaptive Scenario Clustering Algorithm

From Proposition 4 we therefore know that, given the set

B :=
{
γ ∈ CMSC

t : pγt > 1− τ
}
,

we can replace the quantile constraint (4.1b) associated to γ ∈ B by the valid
inequality (4.3) applied to the set St \ γ, in (S-Q) solved on the scenario sets CMSC

t .
Moreover, Constraint (4.1c) reduces to

∑

γ∈CMSC
t \B

yγt p
γ
t ≥ τ −

∑

γ∈B
pγt .

We denote by MSC+ the resulting optimization problem. By construction, we thus
have that

vMSC(x
∗
MSC) ≤ vMSC+(x∗MSC+) ≤ v(x∗)

holds.
At last, we highlight that clustering is a very popular topic in the field of

optimization. Therefore, many ways of obtaining the set of clusters Ct exist, see, e.g.,
the doctoral thesis of Moreira Costa (2022) that discusses the results of Burgard
et al. (2022b), Moreira Costa et al. (2022), and Burgard et al. (2022a). In the
following, we focus on applying the ARA ideas of Chapter 2 to design clusters Ct that
yield smaller sized (S-Q) instances. The algorithmic ideas of ARAs are well suited for
setting up a series of smaller-size clustered problems that can result in tight bounds
on v(x∗). In fact, after each iteration, the ARA yields a solution x ∈ X that will be
used to improve the clustering in the next iteration. As a consequence, this allows
to focus on the important scenarios that influence the quantile estimation w.r.t. the
solution x, i.e., the scenarios for which Constraint (4.1b) is binding if we solve (S-Q)
with St and fix x. Finally, the ARA makes it possible to easily integrate the upper
and lower bound computation given by CMSC+

t and CASC
t as will be seen later.

4.3 Adaptive Scenario Clustering Algorithm

The adaptive scenario clustering algorithm from [MR3] is now described. Here, we rely
on the ARA of Chapter 2 to set up a sequence of refined clusters Ct that continuously
improve in approximating St until a global optimal solution of (Q) is found. To
achieve this, the ARA of this chapter is modified to consider the ASC and MSC+

clusterings that yield bounds on the objective function value of any global optimal
solution of (Q), as described in Proposition 3.

Hence, we first show that the ARA can be applied to (Q). Then, the ARA
components are discussed and the structure of the algorithm is described.

4.3.1 Discussion of the Model

Before applying Algorithm 1 of Section 2.4.5 to quantile-constrained problems, we
show that it can be applied. To do so we rewrite (Q) as (G) and show that (Q)
satisfies the assumptions stated in Section 2.1.
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4.3 Adaptive Scenario Clustering Algorithm

We start by showing that (Q) can be reformulated as (G). To this end, we
set u = x, wt = qt for all t ∈ T and we introduce w = (w1, . . . , w|T |)⊤. Then,
the constraint qt − Q[c⊤t x] = 0 can be written as ht(u,wt) = 0 for all t ∈ T . By
setting J = T and I = ∅, we obtain (Q) reformulated as (G). It can be observed
that, in the quantile-constrained case, w.l.o.g., the set of variables wα+1 is discarded
from (G). Similarly, I = ∅, thus discarding the constraints gi(u,w) = 0 from (G).

If we set zt = (y1t , . . . , y
|Ct|
t )⊤ we may write Constraints (4.1b) and (4.1c)

as h̃t,k(u,wt, zt) ≥ 0, with k ∈ K(t) ⊆ N and |K(t)| = |Ct| + 1 for all t ∈ T .
Then, by introducing slack variables for every k ∈ K(t) and adding them to zt for
all t ∈ T , the constraints can be rewritten as h̃t,k(u,wt, zt) = 0. Additionally, the
set Z describes the positivity of the newly introduced slack variables. Hence, for
all t ∈ T , we have replaced the constraint ht(u,wt) = 0 by a set K(t) of discretization
constraints h̃t,k(u,wt, zt) = 0.

Next, we discuss why (Q) satisfies the assumptions stated in Section 2.1 about (G).
First, unless the mathematical expression of the Q operator is known, which is rarely
the case in practice, the function ht satisfy Assumption 1. Second, Assumption 2
holds if two conditions are met. The first condition states that the global optimal
objective function value of (4.1) over the precomputed set of scenarios St exactly
equals the value of the real quantile Q[c⊤t x] for any x ∈ X. This condition is quite
strong but, e.g., holds when St is shown to be large enough w.r.t. the probability
distribution of ct. For every solution x ∈ X and for every t ∈ T the second condition
states that the associated value of variable qt coming from (S-Q) always is the global
optimal solution of (4.1). As explained in Section 4.1 this global optimal value for qt
can be computed in polynomial time in a post-processing step for a given x ∈ X.
Then, if both conditions are met, Assumption 2 is satisfied if we keep increasing the
size of the clusters until Ct = St for all t ∈ T , i.e., when we consider (S-Q) over the
entire scenario set. Indeed, if Ct = St for all t ∈ T , we know from the first condition
that the global optimal objective function value of the scenario-based approximation
results in the exact value for Q[c⊤t x] and from the second condition that we compute
it correctly.

Thus, we may now apply the ARA of Chapter 2 to (Q). In the next sections
the ARA is tweaked to result in a global optimal solution of (Q) with the use of
Proposition 3. We first present the individual components of the ARA that we
consider and then give a detailed description of the algorithm.

4.3.2 Components of the Algorithm

We now summarize each component of the ARA considered in this chapter.
Because the expression of (4.1b) is linear, we restrain from setting up a model

catalog.
Next, we define the error measures by declining the concepts of Section 2.4.2

to the problem that we consider. Suppose that (S-Q) is solved over a clustering Ct
for all t ∈ T and let (ũ, w̃) ∈ U ×W be the resulting solution. In addition, let x̃
and q̃t be the decision variables and the value of the estimated quantile recomputed
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4.3 Adaptive Scenario Clustering Algorithm

R

(ũ, w̃) ∈ U ×W

Ct

(S-Q) on CASC
t

(S-Q) on CMSC+

t

Figure 4.1: State diagram of Algorithm 1 tailored to solving quantile-constrained
optimization problems to global optimality. The state on the left-hand side is split
into an upper-bound phase, i.e., we solve (S-Q) on CASC

t , and a lower-bound phase,
i.e., we solve (S-Q) on CMSC+

t .

with (4.1) using Ct and x = x̃, respectively. Then, it holds that the reformulation of
the exact total error (2.4) over variable qt yields

νa(ũ, w̃) := |Q[c⊤t x̃]− q̃t|.

Moreover, the exact value of Q[c⊤t x̃] can be computed because the first condition in
Section 4.3.1 states that it is equal to the optimal solution of (4.1) with St and x = x̃.

We remark that in [MR3], no discretization and model error are introduced
because no model catalog is needed.

In the same way as in Section 3.4.5 the marking strategies are based on Dörfler’s
rule, see Nochetto et al. (2009, p. 93), for selecting the subset of R ⊆ T to be
re-clustered. The switching strategies use the solution of the previous ARA iteration
to split a subset of Ct that is considered in the previous ARA iteration. This splitting
is done using kernel density estimation (KDE), as described in Silverman (1986).
The interested reader is referred to point one of Remark 1 in [MR3] for a detailed
description of how KDE is used for cluster splitting.

4.3.3 Description of the Algorithm

Figure 4.1 specifies the state diagram of Figure 2.3 discussed in Section 2.4.5 by
adding the additional notation and ARA extensions that we consider in this chapter.

Hence, we now describe the ARA that we consider through the description of the
state diagram of Figure 4.1. The algorithm iteratively solves a version of (S-Q) over
a clustering Ct, yielding a solution (ũ, w̃) ∈ U ×W . With this solution, the algorithm
refines the existing clustering with switching strategy ξR for a subset R ⊆ T that
is selected with marking strategy σR. Problem (S-Q) is then solved on this new
clustering and the process is repeated until the stopping criterion is reached.

Because ε-feasibility can be achieved in a polynomial-time post processing step,
the algorithm instead focuses on improving the clusterings with the goal of obtaining
a global optimal solution. In other words, we now look for decision variables ũ
that are provably globally optimal for (Q). Hence, three conceptual differences
exist compared to the original ideas presented in Chapter 2. The first difference, as
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4.3 Adaptive Scenario Clustering Algorithm

Algorithm 3: Adaptive refinement algorithm extended with an upper-and
lower-bound phase.

Input: error tolerance ε > 0, marking strategy σR, improvement rule ξR
Output: ε-optimal solution uUB of (S-Q) on St

1 foreach t ∈ T do
2 Initialize C0t ← {St}
3 Set vUB ← +∞, vLB ← −∞, and κ← true
4 for k = 0, 1, . . . do
5 if κ then
6 (ũ, w̃, z̃)k ← Solve (S-Q) on CASC,k

t

7 if v(ũ) < vUB then
8 set uUB ← ũ and vUB ← v(ũ)
9 else

10 set κ← false.

11 else
12 (ũ, w̃, z̃)k ← Solve (S-Q) on CMSC+,k

t

13 if vMSC+(ũ) > vLB then
14 set uLB ← ũ and vLB ← vMSC+(ũ)
15 else
16 set κ← true

17 if v(ũ) < vUB then
18 set uUB ← ũ and vUB ← v(ũ)

19 if (vUB − vLB)/vUB ≤ ε then
20 return uUB

21 Compute set Rk according to σR
22 foreach t ∈ Rk do
23 Refine Ckt according to ξR, yielding Ck+1

t

discussed previously, is that no model switching is carried out and it is therefore
removed from the state on the right-hand side of Figure 4.1. Second, an upper-and
lower-bound phase are added to the algorithm. Depending on the considered phase,
the algorithm solves (S-Q) on CASC

t or on CMSC+
t . The state diagram of Figure 4.1

highlights this by splitting the left-hand side state in an upper-and lower-bound
phase. Finally, the most important difference is the stopping criterion that we use.
For the case of quantile-constrained optimization problems we keep the value of the
best found upper bound vUB and the value of best found lower bound vLB. Then,
for a given ε > 0, we stop the algorithm if (vUB − vLB)/vUB ≤ ε, i.e., when ε-global
optimality is achieved.

Algorithm 3 describes the detailed functioning of the ARA that is considered for

51



4.4 Numerical Results

solving quantile-constrained optimization problems. We now shortly point at the
aforementioned parts that compose the algorithm. The initial clusters C0t , the upper
bound vUB, the lower bound vLB, and the Boolean parameter κ are initialized in
Lines 1–3. Afterward, the main for-loop of the ARA is started in Line 4. Here, κ
indicates if the ASC or MSC+ is considered. Once a clustering is selected, the
model is solved, either with the goal of decreasing the best found upper bound vUB
in Lines 6–10 or with the goal of increasing the best found lower bound vLB in
Lines 12–18. Then, the algorithm inverts κ if the value of the bound respective
to the current phase is not improved. Thus, switching the focus of the next ARA
iteration on the opposite bound. We additionally remark that, when the MSC+

is selected, we also check if the resulting solution ũ increases the value of vLB as
described in Proposition 3. Ultimately, the ε-global optimality stopping criterion
that compares vUB and vLB is computed in Line 19. Unless the algorithm is stopped
there, a selection of clusters inside Ct are split with KDE, for every t ∈ R ⊆ T , in
Lines 21–23. Moreover, the second item of Remark 1 in [MR3] describes a set of
improvements that increase the computational performances of the algorithm.

Finally, it can be shown that Algorithm 3 finitely terminates at an ε-global optimal
solution of (S-Q) solved on St, i.e., at an ε-global optimal solution of (Q) if the
conditions of Section 4.3.1 are satisfied, as long as the size of Ckt keeps increasing.

Theorem 2 (Theorem 1 in [MR3]) Let u∗ be an optimal solution of Problem (Q)
and let v(u∗) be its value. Moreover, let Ckt be the clustering of St for index t ∈ T in
iteration k. Suppose further that there exists an index t ∈ T such that

|Ckt | > |Ck−1
t |

for all iterations k. Then, Algorithm 3 terminates after a finite number of cluster
refinements with a point ũ ∈ U such that

v(ũ)− v(u∗)
v(ũ)

≤ ε.

4.4 Numerical Results

The preliminary solution techniques of Section 4.2 along with the ASCA of Section 4.3
are now compared with each other. For the sake of conciseness, we restrict to
presenting the results of the maintenance planning problem instances. The interested
reader is therefore referred to Section 6.2 of [MR3] for the numerical results of the
portfolio optimization problem. Moreover, we highlight the results of the maintenance
planning problem by only considering the semi-final instances of the EURO/ROADEF
challenge 2020 as they are sufficient for describing how the aforementioned methods
behave on the complete instance set. The characteristics of the EURO/ROADEF
challenge 2020 instances are displayed in Table 1 of [MR3]. We refer to the beginning
of Section 6 in [MR3] for a discussion about additional notation, implementation
details, hardware setup, and software setup that we use.
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Figure 4.2: Bar plot for minm′∈M′{vm′
LB : vm

′
LB > 0}/vmLB (left side)

and vmUB/maxm′∈M′{vm′
UB : vm

′
UB <∞} (right side), whereM′ is composed of MILP

(blue) and MILPVI∗ (yellow).

Before discussing the results, we draw attention to the fact that no instance is
solved to global optimality within the allocated time of 90 minutes for any of the
considered methods. Hence, we shortly explain how the bar plots of Figures 4.2–4.5
are created, that allow to visually compare the effect of the methods on the value
of vUB and vLB. LetM′ be the subset of methods considered in the bar plot. Then,
for all m ∈M′ the bar plots show the re-scaled value of vmLB (left side) and vmUB
(right side) on all instances. The bars’ lengths are determined as follows. The
left side of the bar plots is equal to minm′∈M′{vm′

LB : vm
′

LB > 0}/vmLB. The numera-
tor minm′∈M′{vm′

LB : vm
′

LB > 0} takes the value of the smallest lower bound obtained
by the methods in M′ while ignoring a lower bound if the method m′ does not
improve on vm

′
LB = 0. We apply a similar rule for the right side of the bar plots

using vmUB/maxm′∈M′{vm′
UB : vm

′
UB <∞}. Here, maxm′∈M′{vmUB : vm

′
UB <∞} takes the

value of the largest upper bound obtained by the two compared methods without
considering vm′

UB if no incumbent is found during the solution process of m′.
Thus, we begin the comparison by considering the generic MILP with the MILPVI∗ ,

i.e., the MILP enriched with the valid inequalities of Proposition 2, in Figure 4.2.
For the majority of the instances we observe that the valid inequalities have a strong
influence on vUB as well as vLB where the biggest impact can be observed on the value
of time limit. Most likely, this has two reasons. First, additional time is needed to
separate violated inequalities in the first node of the branch-and-bound tree. Second,
the model relaxations are harder to solve after adding valid inequalities due their
increased size.

Consequently, we decided to add an initial heuristic to overcome this effect.
More specifically, in Section 4 of [MR3] we propose an Overlapping Alternating
Direction Method (OADM) for finding primal solutions to (S-Q). Hence, we use the
notation MILPOADM

VI∗ when we refer to MILPVI∗ enhanced with an initial OADM
heuristic. Figure 4.3 then compares MILPVI∗ and MILPOADM

VI∗ on the instances that
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Figure 4.3: Bar plot for minm′∈M′{vm′
LB : vm

′
LB > 0}/vmLB (left side)

and vmUB/maxm′∈M′{vm′
UB : vm

′
UB < ∞} (right side), where M′ is composed

of MILPOADM
VI∗ (blue) and MILPVI∗ (yellow). Only the instances with a signifi-

cant difference in the results for vLB and vUB are displayed.
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Figure 4.4: Bar plot for minm′∈M′{vm′
LB : vm

′
LB > 0}/vmLB (left side)

and vmUB/maxm′∈M′{vm′
UB : vm

′
UB < ∞} (right side), where M′ is composed of MILP

(blue) and ASCA (yellow).

show a significant difference in the results for vLB and vUB. It can be observed
that the OADM finds an upper bound for every problematic instance. Nevertheless,
e.g., for instance C02, the OADM is not competitive compared to MILPVI∗ on vUB.
Moreover, the OADM has a negative influence on the value of vLB for instance C13.
This is explained by the fact that the time spent in one OADM iteration is rather
long–hence harming the impact of the valid inequalities on vLB.

Next, Figure 4.4 compares the results of the generic MILP with the ASCA. The
ASCA clearly outperforms the generic MILP both in terms of upper and lower bound.
But, in the case of instances C13 and C15, the ASCA does not improve on the lower
bound vLB = 0. In fact, the ASCA keeps improving vUB using the ASC problem
during the initial iterations of the algorithm. Since vUB keeps decreasing in every
iteration, ASCA never enters the MSC+ problem before reaching the given time limit.
It can therefore also be observed that the ASCA always finds a better upper bound
compared to the generic MILP.
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Figure 4.5: Bar plot for minm′∈M′{vm′
LB : vm

′
LB > 0}/vmLB (left side)

and vmUB/maxm′∈M′{vm′
UB : vm

′
UB < ∞} (right side), where M′ is composed

of MILPOADM
VI∗ (blue) and ASCA (yellow).

Finally, the two winner methods, i.e., MILPOADM
VI∗ and ASCA, are compared in

Figure 4.5. Both methods result in values for vUB and vLB that are close to each other.
Considering the values of vLB, we see that MILPOADM

VI∗ always slightly outperforms
ASCA except for the instance C14. The opposite situation occurs when the two
configurations are compared w.r.t. the values of vUB.

55



5
Conclusion

We now conclude Part I of this thesis by discussing the challenges that we solved as
well as some future research avenues.

In Chapter 2, we presented a generalized framework for applying ARAs to energy
network optimization problems. This framework ties together the ideas considered in
the papers that make up this cumulative thesis. More specifically, the objective of
this chapter is to pave the way for future works that propose a general theory for
ARAs applied to energy network applications.

The theoretical analysis of the proposed framework is a topic of future research.
Given the assumptions about the general model, we could, e.g., study the finite
termination of the generalized ARA at ε-feasible points. Moreover, we did not
combine the coarsening and down-switching step extension from Chapter 3 and
the lower bound extension from Chapter 4. The resulting ARA would consider
optimization problems that stay solvable in a reasonable amount of time while being
parameterized to reach the optimal objective value of the original problem.

Afterward, we highlighted the versatility of the framework by demonstrating
the applicability of the generalized ARA to two entirely different energy network
optimization problems. The stationary operation of district heating networks is
considered in Chapter 3. A model is presented and reformulated to fit into the
generalized framework. Then, the same model is specified to respectively coincide
with the models considered in [MR1] and [MR2], respectively.

For the case of [MR1], a surrogate function is fitted to approximate the nonlinear
internal energy density equation. Moreover, expansion decisions are added to the
model, which yields a nonconvex MINLP. A test case is constructed that allows
to identify the three parameters that influence the expansion decision making: the
estimated power demand of the candidate consumer, the distance of the candidate
consumer to the existing network, and the thermal losses of the pipes. Here, one
could extend the framework for DHNs with cycles in the forward and backward flow
network. This would naturally require additional modeling and hence would increase

56



5 Conclusion

the time needed to solve the model. If this extension is considered, it might be possible
to identify additional parameters that drive the expansion decision making. Some
authors have considered the case with cycles by abstracting from other difficulties that
are considered in [MR1]; see, e.g., Bordin et al. (2016) and Blommaert et al. (2018).

For the case of [MR2], the operational optimization problem is enhanced by a
second-order polynomial state equation yielding a nonconvex NLP with complemen-
tarity constraints. Hence, in [MR2] the focus is on obtaining accurate ε-feasible
controls for stationary operation of DHNs. The effect of the generalized ARA is
studied and extended with a coarsening and a model down-switching step. Two test
cases are used to produce the ARA results. For both instances, the ARA terminates
at an ε-feasible solution. However, this is not the case for larger networks because
the nonlinear solvers converge to infeasible points. Nevertheless, we observe that the
ARA outperforms NLP optimization solvers. In fact, the NLP solvers do not yield
any feasible solution for the degree of accuracy that the ARA provides. Moreover,
the influence of using exact errors and error estimates is studied. We observe that the
benefit of using exact errors is small. Yet, the results obtained with exact errors yield
optimization models with constraints that have less nonlinear terms in comparison
with the error estimates results.

In fact, the main reason that prevents the ARA from solving the operational
optimization problem on larger networks are the internal energy density mixing
equations. If we were able to predict the flow directions of the pipes inside the
network this would highly strengthen the ARA approach. One could, e.g., set up a
preprocessing step that extracts flow directions using the Euler equations of the pipes
and the demand of the consumers. If this approach does not work, machine learning
techniques could be used instead. Machine learning has successfully been applied to
similar tasks arising in the power systems literature, see, e.g., Pineda et al. (2020)
or Chatzos et al. (2022) and might therefore be a good candidate for predicting flow
directions.

Another important topic that has not been discussed in this thesis is the transient
dynamics that govern the behavior of the water. By removing the stationary assump-
tion, the operational optimization problem becomes much harder to solve. Model
order reduction (MOR) techniques, as discussed in Brunton and Kutz (2022), are a
tool to bypass this challenge. There exist research that combines MOR and PDE
constrained optimization; see, e.g., the survey by Benner et al. (2014). Moreover,
in the recent works by Egger et al. (2018), Himpe et al. (2021), and Liljegren-Sailer
and Marheineke (2022b), MOR methods for the damped wave equation and the
Euler equations on networks are studied. These works focus on the preservation
of port-Hamiltonian structures. The port-Hamiltonian paradigm, see, e.g., Schaft
and Jeltsema (2014) or the discussion in Beattie et al. (2017), intuitively couples
systems from different physical domains through energy exchange. We also refer
to Hauschild and Marheineke (2021), Mehrmann et al. (2018a) and Liljegren-Sailer
and Marheineke (2022a) for the modeling and approximation of energy networks in
port-Hamiltonian form. Consequently, this progress opens the door to adaptive MOR
for port-Hamiltonian formulations of energy transport.
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Finally, in Chapter 4 we summarize the results of [MR3] where quantile-constrained
optimization problems are considered. As a first step towards solving such problems,
we define the scenario-based quantile-constrained optimization problem. This scenario-
based model approximates the original quantile-constrained optimization problem
and is an MILP for the examples that are presented. Then, solution techniques are
developed for solving the scenario-based problem; valid inequalities and clustering of
the scenarios. Afterward, the connection between the generalized ARA framework
and the quantile-constrained optimization is presented. We tweak the ARA to the
problem at hand and extend it with a complementary lower bound step. This new
algorithm is called the adaptive scenario clustering algorithm. We prove that the
ASCA finitely terminates at an ε-global optimal solution of the original problem.
Ultimately, the complete set of solution techniques are compared on a set of instances.
We observe that the proposed solution methods beat the MILP solver.

In this chapter, we assumed that enough scenarios are sampled to sufficiently
describe the uncertain cost vector. In practice, this assumption is rarely satisfied.
Therefore, future works could study adaptive refinement of the scenario set through
sampling instead of clustering. Furthermore, future research should be concerned
with applying the proposed techniques to chance constraints, see, e.g., Peña-Ordieres
et al. (2020). In fact, Espinoza and Moreno (2014) and Ahmed et al. (2017) proposed
similar but different scenario grouping techniques for quantile and chance-constrained
optimization problems, respectively.

58



Bibliography

Ahmed, S., J. Luedtke, Y. Song, and W. Xie (2017). “Nonanticipative duality, relax-
ations, and formulations for chance-constrained stochastic programs”. In: Math-
ematical Programming 162.1-2, Ser. A, pp. 51–81. doi: 10.1007/s10107-016-
1029-z.

Aigner, K.-M., R. Burlacu, F. Liers, and A. Martin (2020). “Solving AC Optimal
Power Flow with Discrete Decisions to Global Optimality”. url: https://opus4.
kobv.de/opus4-trr154/frontdoor/index/index/year/2020/docId/323.

Alexandrov, N. M., J. E. Dennis, R. M. Lewis, and V. Torczon (Feb. 1998). “A trust-
region framework for managing the use of approximation models in optimization”.
In: Structural optimization 15.1, pp. 16–23. doi: 10.1007/BF01197433.

Aravena, I., D. K. Molzahn, S. Zhang, C. G. Petra, F. E. Curtis, S. Tu, A. Wächter,
E. Wei, E. Wong, A. Gholami, K. Sun, X. A. Sun, S. T. Elbert, J. T. Holzer,
and A. Veeramany (2022). Recent Developments in Security-Constrained AC
Optimal Power Flow: Overview of Challenge 1 in the ARPA-E Grid Optimization
Competition. doi: 10.48550/ARXIV.2206.07843.

Artzner, P., F. Delbaen, J.-M. Eber, and D. Heath (1999). “Coherent measures of risk”.
In: Mathematical Finance 9.3, pp. 203–228. doi: 10.1111/1467-9965.00068.

Babuška, I. and W. C. Rheinboldt (1977). “A-posteriori error estimates for the finite
element method”. In: International Journal for Numerical Methods in Engineering
12.10, pp. 1597–1615. doi: 10.1002/nme.1620121010.

Bangerth, W. and R. Rannacher (2003). Adaptive finite element methods for differen-
tial equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel.
doi: 10.1007/978-3-0348-7605-6.

Beattie, C., V. Mehrmann, H. Xu, and H. Zwart (2017). Port-Hamiltonian descriptor
systems. doi: 10.48550/ARXIV.1705.09081.

Becker, R., H. Kapp, and R. Rannacher (2000). “Adaptive finite element meth-
ods for optimal control of partial differential equations: basic concept”. In:
SIAM Journal on Control and Optimization 39.1, pp. 113–132. doi: 10.1137/
S0363012999351097.

Becker, R. and R. Rannacher (2001). “An optimal control approach to a posteriori
error estimation in finite element methods”. In: Acta Numerica 10, pp. 1–102. doi:
10.1017/S0962492901000010.

Benati, S. and R. Rizzi (2007). “A mixed integer linear programming formulation
of the optimal mean/value-at-risk portfolio problem”. In: European Journal of
Operational Research 176.1, pp. 423–434. doi: 10.1016/j.ejor.2005.07.020.

Benders, J. F. (1962). “Partitioning procedures for solving mixed-variables program-
ming problems”. In: Numerische Mathematik 4, pp. 238–252. doi: 10.1007/
BF01386316.

Benner, P., E. Sachs, and S. Volkwein (2014). “Model order reduction for PDE con-
strained optimization”. In: Trends in PDE constrained optimization. Vol. 165. Inter-

59

https://doi.org/10.1007/s10107-016-1029-z
https://doi.org/10.1007/s10107-016-1029-z
https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/year/2020/docId/323
https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/year/2020/docId/323
https://doi.org/10.1007/BF01197433
https://doi.org/10.48550/ARXIV.2206.07843
https://doi.org/10.1111/1467-9965.00068
https://doi.org/10.1002/nme.1620121010
https://doi.org/10.1007/978-3-0348-7605-6
https://doi.org/10.48550/ARXIV.1705.09081
https://doi.org/10.1137/S0363012999351097
https://doi.org/10.1137/S0363012999351097
https://doi.org/10.1017/S0962492901000010
https://doi.org/10.1016/j.ejor.2005.07.020
https://doi.org/10.1007/BF01386316
https://doi.org/10.1007/BF01386316


Bibliography

national Series of Numerical Mathematics. Birkhäuser/Springer, Cham, pp. 303–
326. doi: 10.1007/978-3-319-05083-6_19.

Benonysson, A., B. Bøhm, and H. F. Ravn (1995). “Operational optimization in a
district heating system”. In: Energy Conversion and Management 36.5, pp. 297–
314. doi: 10.1016/0196-8904(95)98895-T.

Berthold, H., H. Heitsch, R. Henrion, and J. Schwientek (2022). “On the algorithmic
solution of optimization problems subject to probabilistic/robust (probust) con-
straints”. In: Mathematical Methods of Operations Research 96.1, pp. 1–37. doi:
10.1007/s00186-021-00764-8.

Blankenship, J. W. and J. E. Falk (1976). “Infinitely constrained optimization prob-
lems”. In: Journal of Optimization Theory and Applications 19.2, pp. 261–281.
doi: 10.1007/BF00934096.

Blommaert, M., R. Salenbien, and M. Baelmans (2018). “An adjoint approach to
thermal network topology optimization”. In: International Heat Transfer Confer-
ence Digital Library. Begel House Inc., pp. 2081–2089. doi: 10.1615/IHTC16.cms.
024074.

Bordin, C., A. Gordini, and D. Vigo (2016). “An optimization approach for district
heating strategic network design”. In: European Journal of Operational Research
252.1, pp. 296–307. doi: 10.1016/j.ejor.2015.12.049.

Borsche, R., M. Eimer, and N. Siedow (2019). “A local time stepping method for
thermal energy transport in district heating networks”. In: Applied Mathematics
and Computation 353, pp. 215–229. doi: 10.1016/j.amc.2019.01.072.

Bracco, S., G. Dentici, and S. Siri (2013). “Economic and environmental optimization
model for the design and the operation of a combined heat and power distributed
generation system in an urban area”. In: Energy 55, pp. 1014–1024. doi: 10.1016/
j.energy.2013.04.004.

Brunton, S. L. and J. N. Kutz (2022). Data-driven science and engineering—machine
learning, dynamical systems, and control. Second edition. Cambridge University
Press. doi: 10.1017/9781009089517.

Burgard, J. P., C. Moreira Costa, C. Hojny, T. Kleinert, and M. Schmidt (2022a).
“Mixed-Integer Programming Techniques for the Minimum Sum-of-Squares Clus-
tering Problem”. url: https://optimization-online.org/2022/03/8823/.

Burgard, J. P., C. Moreira Costa, and M. Schmidt (2022b). “Robustification of the
k-means clustering problem and tailored decomposition methods: when more
conservative means more accurate”. In: Annals of Operations Research. doi:
10.1007/s10479-022-04818-w.

Burlacu, R., H. Egger, M. Groß, A. Martin, M. E. Pfetsch, L. Schewe, M. Sirvent,
and M. Skutella (2019). “Maximizing the storage capacity of gas networks: a
global MINLP approach”. In: Optimization and Engineering 20.2, pp. 543–573.
doi: 10.1007/s11081-018-9414-5.

Burlacu, R., B. Geißler, and L. Schewe (2020). “Solving mixed-integer nonlinear pro-
grammes using adaptively refined mixed-integer linear programmes”. In: Optimiza-
tion Methods & Software 35.1, pp. 37–64. doi: 10.1080/10556788.2018.1556661.

60

https://doi.org/10.1007/978-3-319-05083-6_19
https://doi.org/10.1016/0196-8904(95)98895-T
https://doi.org/10.1007/s00186-021-00764-8
https://doi.org/10.1007/BF00934096
https://doi.org/10.1615/IHTC16.cms.024074
https://doi.org/10.1615/IHTC16.cms.024074
https://doi.org/10.1016/j.ejor.2015.12.049
https://doi.org/10.1016/j.amc.2019.01.072
https://doi.org/10.1016/j.energy.2013.04.004
https://doi.org/10.1016/j.energy.2013.04.004
https://doi.org/10.1017/9781009089517
https://optimization-online.org/2022/03/8823/
https://doi.org/10.1007/s10479-022-04818-w
https://doi.org/10.1007/s11081-018-9414-5
https://doi.org/10.1080/10556788.2018.1556661


Bibliography

Byrd, R. H., J. Nocedal, and R. A. Waltz (2006). “KNITRO: An integrated package for
nonlinear optimization”. In: Large-scale nonlinear optimization. Vol. 83. Nonconvex
Optim. Appl. Springer, New York, pp. 35–59. doi: 10.1007/0-387-30065-1_4.

Chatzos, M., T. W. K. Mak, and P. V. Hentenryck (2022). “Spatial Network De-
composition for Fast and Scalable AC-OPF Learning”. In: IEEE Transactions on
Power Systems 37.4, pp. 2601–2612. doi: 10.1109/TPWRS.2021.3124726.

Chorin, A. J. and J. E. Marsden (1993). A mathematical introduction to fluid me-
chanics. Third edition. Vol. 4. Texts in Applied Mathematics. Springer-Verlag,
New York. doi: 10.1007/978-1-4612-0883-9.

Conejo, A. J., M. Carrión, and J. M. Morales (2010). Decision Making Under Un-
certainty in Electricity Markets. Boston, MA: Springer US. doi: 10.1007/978-1-
4419-7421-1.

Dantzig, G. B. (1960). “On the significance of solving linear programming problems
with some integer variables”. In: Econometrica. Journal of the Econometric Society
28, pp. 30–44. doi: 10.2307/1905292.

Deisenroth, M. P., A. A. Faisal, and C. S. Ong (2020). Mathematics for machine
learning. Cambridge University Press, Cambridge. doi: 10.1017/9781108679930.

Domschke, P., A. Dua, J. J. Stolwijk, J. Lang, and V. Mehrmann (2018). “Adaptive
refinement strategies for the simulation of gas flow in networks using a model
hierarchy”. In: Electronic Transactions on Numerical Analysis 48, pp. 97–113. doi:
10.48550/ARXIV.1701.09031.

Domschke, P., B. Hiller, J. Lang, V. Mehrmann, R. Morandin, and C. Tischendorf
(2021). “Gas Network Modeling: An Overview”. url: https://opus4.kobv.de/
opus4-trr154/frontdoor/index/index/docId/411.

Domschke, P., O. Kolb, and J. Lang (2015). “Adjoint-based error control for the
simulation and optimization of gas and water supply networks”. In: Applied
Mathematics and Computation 259, pp. 1003–1018. doi: 10.1016/j.amc.2015.
03.029.

Duran, M. A. and I. E. Grossmann (1986). “An outer-approximation algorithm for a
class of mixed-integer nonlinear programs”. In: Mathematical Programming 36.3,
pp. 307–339. doi: 10.1007/BF02592064.

Egger, H., T. Kugler, B. Liljegren-Sailer, N. Marheineke, and V. Mehrmann (2018).
“On structure-preserving model reduction for damped wave propagation in trans-
port networks”. In: SIAM Journal on Scientific Computing 40.1, pp. A331–A365.
doi: 10.1137/17M1125303.

Espinoza, D. and E. Moreno (2014). “A primal-dual aggregation algorithm for minimiz-
ing conditional value-at-risk in linear programs”. In: Computational Optimization
and Applications 59.3, pp. 617–638. doi: 10.1007/s10589-014-9692-6.

Fajemisin, A., D. Maragno, and D. d. Hertog (2021). Optimization with Constraint
Learning: A Framework and Survey. doi: 10.48550/ARXIV.2110.02121.

Fletcher, R. and S. Leyffer (1994). “Solving mixed integer nonlinear programs by
outer approximation”. In: Mathematical Programming 66.3, Ser. A, pp. 327–349.
doi: 10.1007/BF01581153.

61

https://doi.org/10.1007/0-387-30065-1_4
https://doi.org/10.1109/TPWRS.2021.3124726
https://doi.org/10.1007/978-1-4612-0883-9
https://doi.org/10.1007/978-1-4419-7421-1
https://doi.org/10.1007/978-1-4419-7421-1
https://doi.org/10.2307/1905292
https://doi.org/10.1017/9781108679930
https://doi.org/10.48550/ARXIV.1701.09031
https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/docId/411
https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/docId/411
https://doi.org/10.1016/j.amc.2015.03.029
https://doi.org/10.1016/j.amc.2015.03.029
https://doi.org/10.1007/BF02592064
https://doi.org/10.1137/17M1125303
https://doi.org/10.1007/s10589-014-9692-6
https://doi.org/10.48550/ARXIV.2110.02121
https://doi.org/10.1007/BF01581153


Bibliography

Gaivoronski, A. A. and G. Pflug (2005). “Value-at-Risk in Portfolio Optimization:
Properties and Computational Approach”. In: Journal of Risk 7.2, pp. 1–31. doi:
10.21314/JOR.2005.106.

Geißler, B., A. Martin, A. Morsi, and L. Schewe (2012). “Using piecewise linear
functions for solving MINLPs”. In: Mixed Integer Nonlinear Programming. Vol. 154.
The IMA Volumes in Mathematics and its Applications. Springer, New York,
pp. 287–314. doi: 10.1007/978-1-4614-1927-3_10.

Geißler, B., A. Morsi, and L. Schewe (2013). “A new algorithm for MINLP applied to
gas transport energy cost minimization”. In: Facets of Combinatorial Optimization.
Springer, Heidelberg, pp. 321–353. doi: 10.1007/978-3-642-38189-8_14.

Geoffrion, A. M. (1972). “Generalized Benders decomposition”. In: Journal of Opti-
mization Theory and Applications 10, pp. 237–260. doi: 10.1007/BF00934810.

Goderbauer, S., B. Bahl, P. Voll, M. E. Lübbecke, A. Bardow, and A. M. Koster
(2016). “An adaptive discretization MINLP algorithm for optimal synthesis of
decentralized energy supply systems”. In: Computers & Chemical Engineering 95,
pp. 38–48. doi: 10.1016/j.compchemeng.2016.09.008.

Gratton, S., A. Sartenaer, and P. L. Toint (2008). “Recursive trust-region methods
for multiscale nonlinear optimization”. In: SIAM Journal on Optimization 19.1,
pp. 414–444. doi: 10.1137/050623012.

Grübel, J., R. Krug, M. Schmidt, and W. Wollner (2022). “A Successive Linear
Relaxation Method for MINLPs with Multivariate Lipschitz Continuous Non-
linearities with Applications to Bilevel Optimization and Gas Transport”. url:
https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/docId/498.

Guelpa, E., G. Mutani, V. Todeschi, and V. Verda (2018). “Reduction of CO2
emissions in urban areas through optimal expansion of existing district heating
networks”. In: Journal of Cleaner Production 204, pp. 117–129. doi: 10.1016/j.
jclepro.2018.08.272.

Gupte, A., A. M. C. A. Koster, and S. Kuhnke (2022). “An Adaptive Refinement
Algorithm for Discretizations of Nonconvex QCQP”. In: 20th International Sym-
posium on Experimental Algorithms (SEA 2022). Vol. 233. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 24:1–24:14. doi: 10.4230/LIPIcs.SEA.2022.24.

Haikarainen, C., F. Pettersson, and H. Saxén (2016). “A decomposition procedure for
solving two-dimensional distributed energy system design problems”. In: Applied
Thermal Engineering 100, pp. 30–38. doi: 10.1016/j.applthermaleng.2016.02.
012.

Hante, F. M. and M. Schmidt (2019). “Complementarity-based nonlinear programming
techniques for optimal mixing in gas networks”. In: EURO Journal on Computa-
tional Optimization 7.3, pp. 299–323. doi: 10.1007/s13675-019-00112-w.

Hauschild, S.-A. and N. Marheineke (2021). “Structure-preserving discretization of a
port-Hamiltonian formulation of the non-isothermal Euler equations”. In: PAMM
20.1. doi: 10.1002/pamm.202000014.

Hauschild, S.-A., N. Marheineke, V. Mehrmann, J. Mohring, A. M. Badlyan, M. Rein,
and M. Schmidt (2020). “Port-Hamiltonian modeling of district heating networks”.

62

https://doi.org/10.21314/JOR.2005.106
https://doi.org/10.1007/978-1-4614-1927-3_10
https://doi.org/10.1007/978-3-642-38189-8_14
https://doi.org/10.1007/BF00934810
https://doi.org/10.1016/j.compchemeng.2016.09.008
https://doi.org/10.1137/050623012
https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/docId/498
https://doi.org/10.1016/j.jclepro.2018.08.272
https://doi.org/10.1016/j.jclepro.2018.08.272
https://doi.org/10.4230/LIPIcs.SEA.2022.24
https://doi.org/10.1016/j.applthermaleng.2016.02.012
https://doi.org/10.1016/j.applthermaleng.2016.02.012
https://doi.org/10.1007/s13675-019-00112-w
https://doi.org/10.1002/pamm.202000014


Bibliography

In: Progress in differential-algebraic equations II. Differential-Algebraic Equations
Forum. Springer, Cham, pp. 333–355. doi: 10.1007/978-3-030-53905-4_11.

Himpe, C., S. Grundel, and P. Benner (2021). “Model order reduction for gas and
energy networks”. In: Journal of Mathematics in Industry 11, Paper No. 13, 46.
doi: 10.1186/s13362-021-00109-4.

Hintermüller, M. and R. H. W. Hoppe (2008). “Goal-oriented adaptivity in control
constrained optimal control of partial differential equations”. In: SIAM Journal
on Control and Optimization 47.4, pp. 1721–1743. doi: 10.1137/070683891.

Hinze, M., R. Pinnau, M. Ulbrich, and S. Ulbrich (2009). Optimization with PDE
constraints. Vol. 23. Mathematical Modelling: Theory and Applications. Springer,
New York. doi: 10.1007/978-1-4020-8839-1.

Kleinert, T., M. Labbé, F. Plein, and M. Schmidt (2021). “Closing the Gap in Linear
Bilevel Optimization: A New Valid Primal-Dual Inequality”. In: Optimization
Letters 15, pp. 1027–1040. doi: 10.1007/s11590-020-01660-6.

Koster, A. M. C. A. and S. Kuhnke (2019). “An adaptive discretization algorithm
for the design of water usage and treatment networks”. In: Optimization and
Engineering 20.2, pp. 497–542. doi: 10.1007/s11081-018-9413-6.

Krug, R., G. Leugering, A. Martin, M. Schmidt, and D. Weninger (2021a). “Time-
domain decomposition for optimal control problems governed by semilinear hy-
perbolic systems”. In: SIAM Journal on Control and Optimization 59.6, pp. 4339–
4372. doi: 10.1137/20M138329X.

Krug, R., V. Mehrmann, and M. Schmidt (2021b). “Nonlinear optimization of district
heating networks”. In: Optimization and Engineering 22.2, pp. 783–819. doi:
10.1007/s11081-020-09549-0.

Lagnese, J. E., G. Leugering, and E. J. P. G. Schmidt (1994). Modeling, analysis and
control of dynamic elastic multi-link structures. Systems & Control: Foundations
& Applications. Birkhäuser Boston, Inc., Boston, MA. doi: 10.1007/978-1-
4612-0273-8.

Leugering, G., A. Martin, M. Schmidt, and M. Sirvent (2017). “Nonoverlapping
domain decomposition for optimal control problems governed by semilinear models
for gas flow in networks”. In: Control and Cybernetics 46.3, pp. 191–225. url:
https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/year/2017/
docId/202.

Leyffer, S., A. Sartenaer, and E. Wanufelle (2008). “Branch-and-refine for mixed-
integer nonconvex global optimization”. url: https://wiki.mcs.anl.gov/
leyffer/images/1/15/SOS-OA-ANL.pdf.

Leykekhman, D. and B. Vexler (2016). “A priori error estimates for three dimensional
parabolic optimal control problems with pointwise control”. In: SIAM Journal on
Control and Optimization 54.5, pp. 2403–2435. doi: 10.1137/15M1028042.

Liljegren-Sailer, B. and N. Marheineke (2022a). “On port-Hamiltonian approxima-
tion of a nonlinear flow problem on networks”. In: SIAM Journal on Scientific
Computing 44.3, pp. B834–B859. doi: 10.1137/21M1443480.

63

https://doi.org/10.1007/978-3-030-53905-4_11
https://doi.org/10.1186/s13362-021-00109-4
https://doi.org/10.1137/070683891
https://doi.org/10.1007/978-1-4020-8839-1
https://doi.org/10.1007/s11590-020-01660-6
https://doi.org/10.1007/s11081-018-9413-6
https://doi.org/10.1137/20M138329X
https://doi.org/10.1007/s11081-020-09549-0
https://doi.org/10.1007/978-1-4612-0273-8
https://doi.org/10.1007/978-1-4612-0273-8
https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/year/2017/docId/202
https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/year/2017/docId/202
https://wiki.mcs.anl.gov/leyffer/images/1/15/SOS-OA-ANL.pdf
https://wiki.mcs.anl.gov/leyffer/images/1/15/SOS-OA-ANL.pdf
https://doi.org/10.1137/15M1028042
https://doi.org/10.1137/21M1443480


Bibliography

Liljegren-Sailer, B. and N. Marheineke (2022b). “On snapshot-based model reduction
under compatibility conditions for a nonlinear flow problem on networks”. In:
Journal of Scientific Computing 92.2. doi: 10.1007/s10915-022-01901-z.

Lin, C.-C. (2009). “Comments on: “A mixed integer linear programming formu-
lation of the optimal mean/value-at-risk portfolio problem” [European Jour-
nal of Operational Research 176.1 (2007), pp. 423–434] by S. Benati and R.
Rizzi”. In: European Journal of Operational Research 194.1, pp. 339–341. doi:
10.1016/j.ejor.2008.01.041.

Liu, F., W. W. Hager, and A. V. Rao (2015). “Adaptive mesh refinement method
for optimal control using nonsmoothness detection and mesh size reduction”.
In: Journal of the Franklin Institute 352.10, pp. 4081–4106. doi: 10.1016/j.
jfranklin.2015.05.028.

Lloyd, S. P. (1982). “Least squares quantization in PCM”. In: IEEE Transactions on
Information Theory 28.2, pp. 129–137. doi: 10.1109/TIT.1982.1056489.

Locatelli, M. and F. Schoen (2013). Global Optimization. Vol. 15. SIAM Series on
Optimization. Society for Industrial and Applied Mathematics. doi: 10.1137/1.
9781611972672.

Lundell, A., A. Skjäl, and T. Westerlund (2013). “A reformulation framework for
global optimization”. In: Journal of Global Optimization 57.1, pp. 115–141. doi:
10.1007/s10898-012-9877-4.

MacQueen, J. (1967). “Some methods for classification and analysis of multivariate
observations”. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability. University California Press, pp. 281–297. url: https:
//projecteuclid.org/euclid.bsmsp/1200512992.

Mansini, R., W. Ogryczak, and M. G. Speranza (2003). “LP solvable models for
portfolio optimization: a classification and computational comparison”. In: IMA
Journal of Management Mathematics 14.3, 187–220 (2004). doi: 10.1093/imaman/
14.3.187.

Markowitz, H. M. and A. S. Manne (1957). “On the Solution of Discrete Programming
Problems”. In: Econometrica 25.1, pp. 84–110. url: http://www.jstor.org/
stable/1907744.

Mehrmann, V., R. Morandin, S. Olmi, and E. Schöll (2018a). “Qualitative stability
and synchronicity analysis of power network models in port-Hamiltonian form”.
In: Chaos 28.10. 101102. doi: 10.1063/1.5054850.

Mehrmann, V., M. Schmidt, and J. J. Stolwijk (2018b). “Model and discretization error
adaptivity within stationary gas transport optimization”. In: Vietnam Journal of
Mathematics 46.4, pp. 779–801. doi: 10.1007/s10013-018-0303-1.

Mertz, T., S. Serra, A. Henon, and J. Reneaume (2017). “A MINLP optimization of
the configuration and the design of a district heating network: study case on an
existing site”. In: Energy Procedia 116. 15th International Symposium on District
Heating and Cooling, 4-7 September 2016, Seoul, South Korea, pp. 236–248. doi:
10.1016/j.egypro.2017.05.071.

64

https://doi.org/10.1007/s10915-022-01901-z
https://doi.org/10.1016/j.ejor.2008.01.041
https://doi.org/10.1016/j.jfranklin.2015.05.028
https://doi.org/10.1016/j.jfranklin.2015.05.028
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1137/1.9781611972672
https://doi.org/10.1137/1.9781611972672
https://doi.org/10.1007/s10898-012-9877-4
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992
https://doi.org/10.1093/imaman/14.3.187
https://doi.org/10.1093/imaman/14.3.187
http://www.jstor.org/stable/1907744
http://www.jstor.org/stable/1907744
https://doi.org/10.1063/1.5054850
https://doi.org/10.1007/s10013-018-0303-1
https://doi.org/10.1016/j.egypro.2017.05.071


Bibliography

Misener, R. and C. A. Floudas (2014). “ANTIGONE: Algorithms for coNTinu-
ous/Integer Global Optimization of Nonlinear Equations”. In: Journal of Global
Optimization 59.2-3, pp. 503–526. doi: 10.1007/s10898-014-0166-2.

Molzahn, D. K. and I. A. Hiskens (2019). “A Survey of Relaxations and Approxi-
mations of the Power Flow Equations”. In: Foundations and Trends in Electric
Energy Systems 4.1-2, pp. 1–221. doi: 10.1561/3100000012.

Moreira Costa, C. (2022). “Computational Techniques for Minimum Sum-of-Squares
Clustering, Cardinality-Constrained Optimization, and Robust Clustering Prob-
lems”. PhD thesis. Universität Trier. doi: 10.25353/ubtr-xxxx-5bc7-30f0.

Moreira Costa, C., D. Kreber, and M. Schmidt (2022). “An Alternating Method
for Cardinality-Constrained Optimization: A Computational Study for the Best
Subset Selection and Sparse Portfolio Problems”. In: INFORMS Journal on
Computing. doi: 10.1287/ijoc.2022.1211.

Nochetto, R. H., K. G. Siebert, and A. Veeser (2009). “Theory of adaptive finite
element methods: an introduction”. In: Multiscale, nonlinear and adaptive approx-
imation. Springer, Berlin, pp. 409–542. doi: 10.1007/978-3-642-03413-8_12.

Nussbaumer, T. and S. Thalmann (2016). “Influence of system design on heat distri-
bution costs in district heating”. In: Energy 101, pp. 496–505. doi: 10.1016/j.
energy.2016.02.062.

Peherstorfer, B., K. Willcox, and M. Gunzburger (2018). “Survey of multifidelity
methods in uncertainty propagation, inference, and optimization”. In: SIAM
Review 60.3, pp. 550–591. doi: 10.1137/16M1082469.

Peña-Ordieres, A., J. R. Luedtke, and A. Wächter (2020). “Solving chance-constrained
problems via a smooth sample-based nonlinear approximation”. In: SIAM Journal
on Optimization 30.3, pp. 2221–2250. doi: 10.1137/19M1261985.

Pineda, S., J. M. Morales, and A. Jiménez-Cordero (2020). “Data-Driven Screening
of Network Constraints for Unit Commitment”. In: IEEE Transactions on Power
Systems 35.5, pp. 3695–3705. doi: 10.1109/TPWRS.2020.2980212.

Polak, E. (1997). Optimization: Algorithms and Consistent Approximations. New
York, NY: Springer New York. doi: 10.1007/978-1-4612-0663-7.

Qiu, F., S. Ahmed, S. S. Dey, and L. A. Wolsey (2014). “Covering linear programming
with violations”. In: INFORMS Journal on Computing 26.3, pp. 531–546. doi:
10.1287/ijoc.2013.0582.

Quarteroni, A., R. Sacco, and F. Saleri (2007). Numerical mathematics. Second
Edition. Vol. 37. Texts in Applied Mathematics. Springer-Verlag, Berlin. doi:
10.1007/b98885.

Rüffler, F., V. Mehrmann, and F. M. Hante (2018). “Optimal model switching for gas
flow in pipe networks”. In: Networks and Heterogeneous Media 13.4, pp. 641–661.
doi: 10.3934/nhm.2018029.

Sandou, G., S. Font, S. Tebbani, and Hiret (2005). “Predictive Control of a Complex
District Heating Network”. In: Proceedings of the 44th IEEE Conference on
Decision and Control, pp. 7372–7377. doi: 10.1109/CDC.2005.1583351.

65

https://doi.org/10.1007/s10898-014-0166-2
https://doi.org/10.1561/3100000012
https://doi.org/10.25353/ubtr-xxxx-5bc7-30f0
https://doi.org/10.1287/ijoc.2022.1211
https://doi.org/10.1007/978-3-642-03413-8_12
https://doi.org/10.1016/j.energy.2016.02.062
https://doi.org/10.1016/j.energy.2016.02.062
https://doi.org/10.1137/16M1082469
https://doi.org/10.1137/19M1261985
https://doi.org/10.1109/TPWRS.2020.2980212
https://doi.org/10.1007/978-1-4612-0663-7
https://doi.org/10.1287/ijoc.2013.0582
https://doi.org/10.1007/b98885
https://doi.org/10.3934/nhm.2018029
https://doi.org/10.1109/CDC.2005.1583351


Bibliography

Schaft, A. van der and D. Jeltsema (2014). “Port-Hamiltonian Systems Theory: An
Introductory Overview”. In: Foundations and Trends® in Systems and Control
1.2-3, pp. 173–378. doi: 10.1561/2600000002.

Schmidt, M., M. Sirvent, and W. Wollner (2019). “A decomposition method for
MINLPs with Lipschitz continuous nonlinearities”. In: Mathematical Programming
178.1-2, Ser. A, pp. 449–483. doi: 10.1007/s10107-018-1309-x.

Schmidt, M., M. Sirvent, and W. Wollner (June 2022). “The cost of not knowing
enough: mixed-integer optimization with implicit Lipschitz nonlinearities”. In:
Optimization Letters 16.5, pp. 1355–1372. doi: 10.1007/s11590-021-01827-9.

Schmidt, M., M. C. Steinbach, and B. M. Willert (2015). “High detail stationary
optimization models for gas networks”. In: Optimization and Engineering 16.1,
pp. 131–164. doi: 10.1007/s11081-014-9246-x.

Schmidt, M., M. C. Steinbach, and B. M. Willert (2016). “High detail stationary
optimization models for gas networks: validation and results”. In: Optimization
and Engineering 17.2, pp. 437–472. doi: 10.1007/s11081-015-9300-3.

Sethi, S. P. and G. L. Thompson (2000). Optimal control theory. Second. Applications
to management science and economics. Kluwer Academic Publishers, Boston, MA.
doi: 10.1007/978-3-319-98237-3.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. Mono-
graphs on Statistics and Applied Probability. Chapman & Hall, London. doi:
10.1201/9781315140919.

Sobester, A., A. Forrester, and A. Keane (2008). Engineering Design via Surrogate
Modelling. John Wiley & Sons, Ltd. doi: 10.1002/9780470770801.

Stoer, J. and R. Bulirsch (2002). Introduction to numerical analysis. Third edition.
Vol. 12. Texts in Applied Mathematics. Springer-Verlag, New York. doi: 10.1007/
978-0-387-21738-3.

Stolwijk, J. J. and V. Mehrmann (2018). “Error analysis and model adaptivity for
flows in gas networks”. In: Mathematical Journal of the Ovidius University of
Constantza 26.2, pp. 231–266. doi: 10.2478/auom-2018-0027.

Süli, E. and D. F. Mayers (2003). An introduction to numerical analysis. Cambridge
University Press, Cambridge. doi: 10.1017/CBO9780511801181.

TWL (2020). Preise für Fernwärme. Last accessed 2020-03-25. url: https://www.
twl.de/privatkunden/meine-energie/fernwaerme/.

Verfürth, R. (1994). “A posteriori error estimation and adaptive mesh-refinement
techniques”. In: Proceedings of the Fifth International Congress on Computational
and Applied Mathematics (Leuven, 1992). Vol. 50. 1-3, pp. 67–83. doi: 10.1016/
0377-0427(94)90290-9.

Verrilli, F., S. Srinivasan, G. Gambino, M. Canelli, M. Himanka, C. Del Vecchio,
M. Sasso, and L. Glielmo (2017). “Model Predictive Control-Based Optimal
Operations of District Heating System With Thermal Energy Storage and Flexible
Loads”. In: IEEE Transactions on Automation Science and Engineering 14.2,
pp. 547–557. doi: 10.1109/TASE.2016.2618948.

Werner, S. (2017). “District heating and cooling in Sweden”. In: Energy 126, pp. 419–
429. doi: 10.1016/j.energy.2017.03.052.

66

https://doi.org/10.1561/2600000002
https://doi.org/10.1007/s10107-018-1309-x
https://doi.org/10.1007/s11590-021-01827-9
https://doi.org/10.1007/s11081-014-9246-x
https://doi.org/10.1007/s11081-015-9300-3
https://doi.org/10.1007/978-3-319-98237-3
https://doi.org/10.1201/9781315140919
https://doi.org/10.1002/9780470770801
https://doi.org/10.1007/978-0-387-21738-3
https://doi.org/10.1007/978-0-387-21738-3
https://doi.org/10.2478/auom-2018-0027
https://doi.org/10.1017/CBO9780511801181
https://www.twl.de/privatkunden/meine-energie/fernwaerme/
https://www.twl.de/privatkunden/meine-energie/fernwaerme/
https://doi.org/10.1016/0377-0427(94)90290-9
https://doi.org/10.1016/0377-0427(94)90290-9
https://doi.org/10.1109/TASE.2016.2618948
https://doi.org/10.1016/j.energy.2017.03.052


Bibliography

Wolsey, L. A. (1998). Integer programming. Second edition. Wiley-Interscience Series
in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., New York.
doi: 10.1002/9781119606475.

Ziems, J. C. and S. Ulbrich (2011). “Adaptive multilevel inexact SQP methods for
PDE-constrained optimization”. In: SIAM Journal on Optimization 21.1, pp. 1–40.
doi: 10.1137/080743160.

67

https://doi.org/10.1002/9781119606475
https://doi.org/10.1137/080743160


Part II

Reprints of Published Journal
Articles and Preprints



Article 1
Mixed-Integer Nonlinear Optimization for
District Heating Network Expansion

Marius Roland, Martin Schmidt
at - Automatisierungstechnik (2020), DOI: 10.1515/auto-2020-0063
©2020 Walter de Gruyter GmbH, Berlin/Boston

69

https://doi.org/


Marius Roland, Martin Schmidt

Mixed-Integer Nonlinear Optimization
for District Heating Network Expansion

Abstract: We present a mixed-integer nonlinear optimization model for computing
the optimal expansion of an existing tree-shaped district heating network given a
number of potential new consumers. To this end, we state a stationary and nonlinear
model of all hydraulic and thermal effects in the pipeline network as well as nonlinear
models for consumers and the network’s depot. For the former, we consider the Euler
momentum and the thermal energy equation. The thermal aspects are especially
challenging. Here, we develop a novel polynomial approximation that we use in the
optimization model. The expansion decisions are modeled by binary variables for
which we derive additional valid inequalities that greatly help to solve the highly
challenging problem. Finally, we present a case study in which we identify three
major aspects that strongly influence investment decisions: the estimated average
power demand of potentially new consumers, the distance between the existing
network and the new consumers, and thermal losses in the network.

Keywords: District heating networks, Network expansion, Mixed-integer nonlinear
optimization

1 Introduction

Decarbonization and defossilization are at the core of the European energy transition
and the European Green Deal, which has been announced at the end of 2019; see,
e.g., [7]. Besides measures such as the reduction of CO2 emissions by coal power
plants or a better level of insulation of buildings, the efficient use of the existing
energy transport infrastructure is of key importance. The latter aspect can be
considered from at least to two different angles. On the one hand, the operation,
maintenance, and expansion of energy transport infrastructures such as power or
gas networks cost both money and energy and should thus be done in the most
efficient way. On the other hand, the consideration of, e.g., the power network,
standalone often lead to congestion issues in the recent past, which was more and
more governed by highly volatile and uncertain renewable production. This aspect
also leads to severe economic implications such as negative electricity prices at the

Marius Roland, Martin Schmidt, Trier University, Department of Mathematics, Univer-
sitätsring 15, 54296 Trier, Germany
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energy exchange in certain days of the year with a high share of renewable energy.
The reason is the missing capability of many power systems to store electrical
energy or to transform it to other energy forms, i.e., to use power-to-X technologies.
At this point, sector coupling enters the scene, which is considered as one of the key
technologies towards a successful energy turnaround. Maybe the most intensively
discussed sectors to be coupled are gas and electricity, since gas networks itself can
be used as large-scale energy storages due to the compressibility of natural gas.

In this paper, we consider another type of energy networks that is not as
frequently discussed in the literature: district heating networks. These networks are
used to provide households with heat power by a network that transports hot water
to the consumers, which is heated usually by waste incineration in a depot. Hence,
district heating networks can also be seen as a large-scale energy storage (where
energy is stored in terms of thermal energy), e.g., at days with a high renewable
share.

To this end, there is a strong need to both operate and extend district heating
networks in an optimal way. However, a rigorous mathematical modeling of hydraulic
and thermal aspects in district heating networks together with a proper engineering
modeling of the depot’s processes and consumers leads to highly complex and
nonlinear optimization models. Consequently, the literature on the computation of
cost-optimal controls of district heating networks mainly uses nonlinear optimization
models allowing to accurately describe the physics of the system. However, solving
these models over large time horizons induces large computation times. As a remedy,
model predictive control approaches are used in [32, 38, 2] to optimally operate the
system. In contrast, a highly nonlinear closed-loop model for cost-optimal control of
an existing district heating network is presented and solved over long time horizons
in [18]. To this end, the authors use different preprocessing and other optimization
techniques to reduce computation times.

Besides the optimal control and operation of an existing district heating
network, the expansion of existing networks as well as the design of newly built
parts are important. Obviously, network expansion is only carried out based on
self-interested economic reasoning of the network operator who mainly earns money
due to the power consumption of the connected consumers. This network expansion
problem is studied in this paper for the special case of tree-shaped networks. We
consider an existing district heating network, a set of consumers that are already
connected to the network, and another set of potentially new consumers to be
given. Based on this data, our model allows to compute the cost-optimal expansion
of the network, i.e., the decisions which new consumers should be connected and
which new pipes need to be built. Since this decision still depends on the physics in
the network, we obtain a nonconvex mixed-integer nonlinear optimization problem
(MINLP), which is very challenging to solve.
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Mainly two approaches are considered in the related branch of the literature.
The most frequently used approach consists in stating the design problem as a mixed-
integer linear optimization problem (MILP). This means that all nonlinearities in
the system need to be simplified or—at least—linearized to obtain a mixed-integer
linear problem, usually at the cost of a significantly larger number of integer
variables. Power losses in the system can still be considered, but in a (piecewise)
linear fashion. The advantage of the MILP approach is that it usually delivers
globally optimal solutions. The models usually incorporate decisions on the layout of
the resulting network and on which technologies are installed based on minimizing
the total costs of the entire system. These total costs consist of the investment
and operational costs, where the latter are based on a cost-optimal control of the
system for a set of typical days. Plenty of papers follow this approach and can
be further distinguished along the set of technologies that can be installed in the
nodes of the system; see, e.g., [1, 6, 36]. Commercial solvers are then usually used
to find the optimal solution of the problem. In some cases, the diameter of the
pipes is also considered as a decision variable; see, e.g., [29]. Additionally, in some
papers, these models are extended towards a multi-objective setting, which allows
to minimize the total costs as well as the CO2 production of the entire system.
In [8], this is done using the 𝜀-constraint method and in [26], a genetic algorithm is
used. In other papers, the authors also try to reduce the computational complexity
by using heuristics to reduce the size of the network [12].

The last papers and the ones discussed in what follows are in contrast to
the MILP approach since they do not consider approaches for computing global
optima but use heuristics. Genetic algorithms are used as well in the second
approach, which consists in describing the design problem as a mixed-integer
nonlinear model [11, 20]. However, these algorithms come with a huge disadvantage
because they do not allow for any (sub-)optimality guarantees. Another heuristic
technique (however, with a mathematically more solid foundation) is to apply local
mixed-integer nonlinear solvers or heuristics are used as, e.g., in [23, 24, 3]. The
strength of the mixed-integer nonlinear approach relies on the fact that it allows to
include all nonlinearities of the system and thus to have a more accurate description
of all power losses.

The papers discussed so far deal with the design problem. In these problems,
a completely new district heating network is designed from scratch. In contrast,
expansion problems consider an already existing network to be given and ask for
an optimal expansion. The expansion of existing district heating systems has been
investigated less in the literature. In [4], an MILP is proposed for this problem. No
thermal losses are considered and pressure losses are introduced to avoid reaching
the pressure bounds of the system. However, pressure losses are not reflected in
costs for increasing the pressure in the system.
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In the light of the cited papers, our contribution is the following. To the
best of our knowledge, we are the first ones who propose a stationary nonconvex
mixed-integer nonlinear district heating network expansion model for tree-shaped
networks that accurately takes into account pressure losses as well as thermal losses.
Let us note that the assumption of a tree-like network is crucial for our modeling
of the problem since it significantly reduces the models complexity because flow
directions are known in advance and, thus, nonsmooth and highly nonlinear mixing
models for the water temperature are not required. The entire model is presented in
Section 2, where we also derive some further valid binary inequalities that greatly
help to solve the problem. Afterward, in Section 3, we derive a novel polynomial
approximation of the solution of the thermal energy equation that we then use
in our optimization model. Finally, the model is applied to a realistic test case in
Section 4 and we identify the main driving factors that influence investments in
new district heating network infrastructure. The paper closes with some concluding
remarks and some topics of future research in Section 5.

2 Problem Statement

In this section, we present a model for optimal district heating network expansion.
The model makes it possible to decide if it is economically reasonable to connect
potential new consumers to an existing district heating network that is assumed to
be tree-shaped. We distinguish between investment decisions (i.e., which pipes and
consumers should be connected to the existing network) and operational decisions
for controlling the network. To keep the resulting problem tractable, we restrict
ourselves to the stationary setting. This can be seen as that the investment decisions
are taken up-front and that the computed operational decisions are optimal for the
expanded network. Obviously, investment decisions influence operational decisions
and vice versa.

First, we introduce the graph describing the already existing network as well
as the potential new consumers and pipes that can be added to the network. Then,
the constraints of the optimization problem are presented, followed by the objective
function and an overall model summary.

2.1 Network Topology

To describe the topology of a district heating network, we first discuss the relevant
network elements and the corresponding arc set 𝐴 and and node set 𝑉 of the
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underlying directed and connected graph 𝐺 = (𝑉,𝐴). To this end, we mainly follow
the notation introduced in [18] and extend it. A typical district heating network
consists of the following parts:
(i) A depot 𝑎d ∈ 𝐴 at which the water is heated to satisfy the energy demand of

the connected consumers. Moreover, the pressure is increased to propel the
water flow in the network.

(ii) Consumers 𝑎 ∈ 𝐴c ⊂ 𝐴 that extract energy from the hot water circulating in
the network.

(iii) A forward-flow part consisting of pipes 𝑎 ∈ 𝐴ff, which are used to transport the
heated water from the depot to the consumers. The node set 𝑉ff represents the
nodes in the forward-flow part of the network. These nodes serve as intersections
between the depot and adjacent consumers and pipes.

(iv) A backward-flow part consisting of pipes 𝑎 ∈ 𝐴bf, which transport the cooled
water from consumers back to the depot. The node set 𝑉bf represents the nodes
in the backward-flow part of the network as it is the case for the forward-flow
network.

In particular, consumers are always of the type 𝑎 ∈ 𝐴c with 𝑎 = (𝑢, 𝑣) and 𝑢 ∈ 𝑉ff,
𝑣 ∈ 𝑉bf. Contrarily, the single depot of the network is of type 𝑎d = (𝑢d, 𝑣d) with
𝑢d ∈ 𝑉bf and 𝑣d ∈ 𝑉ff. With these notations at hand, we have

𝐴 = {𝑎d} ∪𝐴c ∪𝐴ff ∪𝐴bf, 𝑉 = 𝑉ff ∪ 𝑉bf.

Moreover, the set of consumers 𝐴c is split up into already connected con-
sumers 𝑎 ∈ 𝐴e

c and potential new, i.e., candidate, consumers 𝑎 ∈ 𝐴c
c. Thus, we

have 𝐴c = 𝐴e
c ∪ 𝐴c

c. Other existing network elements are also super-indexed
with “e”, whereas potential new, i.e., candidate, elements are super-indexed with
“c”. Consequently, we also have 𝐴ff = 𝐴e

ff ∪ 𝐴c
ff and 𝐴bf = 𝐴e

bf ∪ 𝐴c
bf as well as

𝑉ff = 𝑉 e
ff ∪ 𝑉 c

ff and 𝑉bf = 𝑉 e
bf ∪ 𝑉 c

bf.
As already discussed in the introduction, we restrict ourselves to the case in

which the district heating network is tree-shaped. In this context, a tree-shaped
district heating network is a graph for which both the forward and the backward
flow part standalone are trees, i.e., directed acyclic graphs. To be more specific,
the forward flow part of the network is a rooted out-tree and the backward flow
part is a rooted in-tree, where the root is depot of the network. Note, however,
that the entire network always contains cycles since the forward and backward
flow parts are connected via the depot and the consumers. Table 1 summarizes the
graph notation and Figure 1 shows an exemplary district heating network with
additional candidate consumers and pipes.
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Fig. 1: Schematic illustration of a district heating network. Black arcs and nodes represent
pipes in 𝐴ff and nodes in 𝑉ff. Blue arcs and nodes represent pipes in 𝐴bf and nodes in 𝑉bf.
Purple arcs are consumers in 𝐴c and the red arc is the depot 𝑎d. Overall, solid arcs rep-
resent existing arcs in 𝐴e

ff ∪ 𝐴e
bf ∪ 𝐴e

c, whereas dashed arcs represent for candidate arcs
in 𝐴c

ff ∪𝐴c
bf ∪𝐴c

c.

Tab. 1: Arc and node sets.

Symbol Description

𝑎d Depot
𝐴c Consumers
𝐴e

c ⊂ 𝐴c Existing consumers
𝐴c

c ⊂ 𝐴c Candidate consumers
𝐴ff Pipes in the forward-flow network
𝐴e

ff ⊂ 𝐴ff Existing pipes in the forward-flow network
𝐴c

ff ⊂ 𝐴ff Candidate pipes in the forward-flow network
𝐴bf Pipes in the backward-flow network
𝐴e

bf ⊂ 𝐴bf Existing pipes in the backward-flow network
𝐴c

bf ⊂ 𝐴bf Candidate pipes in the backward-flow network

𝑉ff Nodes in the forward-flow network
𝑉 e

ff ⊂ 𝑉ff Existing nodes in the forward-flow network
𝑉 c

ff ⊂ 𝑉ff Candidate nodes in the forward-flow network
𝑉bf Nodes in the backward-flow network
𝑉 e

bf ⊂ 𝑉bf Existing nodes in the backward-flow network
𝑉 c

bf ⊂ 𝑉bf Candidate nodes in the backward-flow network
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2.2 Existing Pipes

In this section, we describe the modeling of all pipes that are already existing in
the network, i.e., of all arcs 𝑎 = (𝑢, 𝑣) ∈ 𝐴e

ff ∪ 𝐴e
bf. First, we derive the required

equations to model the hot water flow in the network; see, e.g., [5, 19, 31]. Note
that these equations are very similar to the Euler equations that are typically
used for natural gas network optimization; see, e.g., [33, 35, 9]. To this end, let
𝐿𝑎 denote the length of pipe 𝑎 and let 𝑥 ∈ [0, 𝐿𝑎] be the spatial position in the
pipe. For the ease of presentation and since we are only considering the stationary
case in this paper, we directly state the stationary variants of the corresponding
nonlinear partial differential equations. The one-dimensional stationary continuity
equation for compressible fluids in cylindrical pipes is given by

d(𝜌𝑎𝑣𝑎)

d𝑥
= 0, (1)

where 𝜌𝑎(·) and 𝑣𝑎(·) denote the density and the velocity of the water depending on
the spatial position in the pipe, respectively; see e.g., [18, 17] for the instationary
setting. Obviously, Equation (1) is equivalent to

𝜌𝑎
d𝑣𝑎
d𝑥

+ 𝑣𝑎
d𝜌𝑎
d𝑥

= 0.

Using the incompressibility of water, which is modeled via

𝑣𝑎
d𝜌𝑎
d𝑥

= 0,

see, e.g., [21], we see that Equation (1) reads

𝜌𝑎
d𝑣𝑎
d𝑥

= 0

in the incompressible case. Since 𝜌𝑎(𝑥) > 0 for all 𝑥, we finally obtain

d𝑣𝑎
d𝑥

= 0, (2)

which implies that velocity 𝑣𝑎(𝑥) = 𝑣𝑎 is constant in a pipe.
Next, we consider the one-dimensional stationary momentum equation for

compressible fluids in cylindrical pipes, which is given by the nonlinear differential
equation

d𝑝𝑎
d𝑥

+
d(𝜌𝑎𝑣

2
𝑎)

d𝑥
+ 𝑔𝜌𝑎ℎ

′
𝑎 + 𝜆𝑎

|𝑣𝑎|𝑣𝑎𝜌𝑎
2𝐷𝑎

= 0;

see again [18, 17] for the instationary setting. The function 𝑝𝑎 represents the
water pressure at the spatial position 𝑥 and 𝑔, ℎ′𝑎, and 𝐷𝑎 represent gravitational
acceleration, the pipe’s slope, and the inner diameter of pipe 𝑎, respectively.
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Friction 𝜆𝑎 at the rough inner pipe wall is modeled using the law of Nikuradse [5],
i.e.,

𝜆𝑎 =

(︂
2 log10

(︂
𝐷𝑎

𝑘𝑎

)︂
+ 1.138

)︂−2

,

where 𝑘𝑎 is the roughness of the inner pipe’s wall. Incompressibility and (2) imply

d(𝜌𝑎𝑣
2
𝑎)

d𝑥
= 0,

which yields
d𝑝𝑎
d𝑥

= −𝑔𝜌𝑎ℎ
′
𝑎 − 𝜆𝑎

|𝑣𝑎|𝑣𝑎𝜌
2𝐷𝑎

. (3)

The additional assumption that the density 𝜌𝑎(𝑥) = 𝜌𝑎 = 𝜌 is constant in the
entire network leads to a right-hand side in (3) that is independent of 𝑥. Thus, the
pressure 𝑝𝑎(𝑥) is linear in 𝑥, which leads to the momentum equation

𝑝𝑎(𝐿𝑎)− 𝑝𝑎(0)

𝐿𝑎
= −𝑔𝜌ℎ′𝑎 − 𝜆𝑎

|𝑣𝑎|𝑣𝑎𝜌
2𝐷𝑎

, (4)

where 𝐿𝑎 denotes the length of pipe 𝑎.
Next, we describe the thermal behavior of water flow in the pipe using the

one-dimensional stationary thermal energy equation

𝑣𝑎
d𝑇𝑎
d𝑥

+
4𝑈𝑎

𝑐p𝜌𝐷𝑎
(𝑇𝑎 − 𝑇soil) = 0; (5)

see again [18, 17] for the instationary setting. Here and in what follows, water
temperature at the spatial position 𝑥 is denoted with 𝑇𝑎(𝑥) and the parameters 𝑈𝑎,
𝑐p, and 𝑇soil represent the heat transfer coefficient of the pipe’s wall, the specific
heat capacity of water, and the temperature of the surrounding soil of the pipe,
respectively. Equation (5) is a first-order ordinary differential equation (ODE) and
can be solved as stated in the following lemma. To simplify the presentation let us
remark that both water flows as well as velocities can be assumed to be nonnegative
since the network is a tree and we have only a single depot.

Lemma 1. The ODE (5),

𝑣𝑎
d𝑇𝑎
d𝑥

(𝑥) +
4𝑈𝑎

𝑐p𝜌𝐷𝑎
(𝑇𝑎(𝑥)− 𝑇soil) = 0,

has the solution

𝑇𝑎(𝑥; 𝑣𝑎) =

⎧
⎨
⎩
𝑇soil, if 𝑣𝑎 = 0,

𝐶𝑒
− 4𝑈𝑎𝑥

𝑐p𝜌𝐷𝑎𝑣𝑎 + 𝑇soil, if 𝑣𝑎 > 0,
(6)

where 𝐶 ∈ R is a constant. The solution is continuous for all 𝑥 ∈ [0, 𝐿𝑎] and
all 𝑣𝑎 ≥ 0.
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The proof of this lemma is rather straightforward and can be found in Appendix A.
For a macroscopic network modeling, we are again mainly interested in the

relation between the quantities at the end nodes of the pipes as it is also the case
for the pressure loss equation (4) that couples inflow and outflow pressure as well
as the water flow on the arc. Regarding the temperature loss model, we aim for
something similar but for a coupling of inflow and outflow temperature as well as
the flow on the arc. As usual, the constant 𝐶 appears in the general solution of
the stationary thermal energy equation as given in Lemma 1. If the latter ODE is
considered as an initial value problem with the initial value being the inflow water
temperature, this constant can be specified in dependence of the initial value, i.e.,

𝑇𝑎(0; 𝑣𝑎) = 𝐶 + 𝑇soil

holds for 𝑣𝑎 > 0. This means that the constant represents the offset between the
inflow and the soil temperature. Going further, we can rewrite the solution as

𝑇𝑎(𝐿𝑎; 𝑣𝑎) =

⎧
⎨
⎩
𝑇soil, 𝑣𝑎 = 0,

(𝑇𝑎(0)− 𝑇soil) 𝑒
− 4𝑈𝑎𝐿𝑎

𝑐p𝜌𝐷𝑎𝑣𝑎 + 𝑇soil, 𝑣𝑎 > 0.
(7)

It is easy to see that 𝑇𝑎(𝐿𝑎; 𝑣𝑎) is smooth at 𝑣𝑎 = 0. However, the problem is
that this function is defined by a case distinction (𝑣𝑎 = 0 vs. 𝑣𝑎 ̸= 0) since the
second part of the function’s definition is not defined for 𝑣𝑎 = 0. This renders the
integration of (7) into a model that should later be solved by a global MINLP
solver impossible. Furthermore, it is not possible to simply include the second part
of the definition standalone in the model since the resulting constraint would not
be well-defined in all cases in which an arc has a zero flow, which is, e.g., the case
for all candidate pipes that are not built. To tackle this problem, we will derive an
approximation 𝑓approx in Section 3 so that (7) is approximately captured via using
the equality constraint 𝑓approx = 0.

Finally note that all physical equations in this section are stated using the
velocity 𝑣𝑎 of the water flow in the pipe. Using the formula 𝑞𝑎 = 𝜌𝐴𝑎𝑣𝑎 with
𝐴𝑎 = 𝜋(𝐷𝑎/2)

2, which directly connects velocity 𝑣𝑎 with the mass flow 𝑞𝑎 (note
again that 𝜌 is constant), we can also state all equations such as the momentum or
the thermal energy equation in terms of mass flow instead of velocity.

2.3 Nodes

Nodes are used to connect adjacent pipes or other types of arcs. At nodes, we need
to model three different phenomena:
(i) mass conservation,
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(ii) pressure continuity, and
(iii) mixing of different inflowing water temperatures.

For stating mass conservation, we introduce the notations

𝛿in(𝑢) := {𝑎 ∈ 𝐴 : ∃𝑣 ∈ 𝑉 with 𝑎 = (𝑣, 𝑢)},
𝛿out(𝑢) := {𝑎 ∈ 𝐴 : ∃𝑣 ∈ 𝑉 with 𝑎 = (𝑢, 𝑣)}

for incoming and outgoing arcs at node 𝑢 ∈ 𝑉 . With this, the mass flow 𝑞𝑎 needs
to satisfy ∑︁

𝑎∈𝛿in(𝑢)

𝑞𝑎 =
∑︁

𝑎∈𝛿out(𝑢)

𝑞𝑎, 𝑢 ∈ 𝑉. (8)

Pressure continuity at nodes is easily modeled using

𝑝𝑢 = 𝑝𝑎(0), 𝑢 ∈ 𝑉, 𝑎 ∈ 𝛿out(𝑢),

𝑝𝑢 = 𝑝𝑎(𝐿𝑎), 𝑢 ∈ 𝑉, 𝑎 ∈ 𝛿in(𝑢), (9)

where 𝑝𝑢 is the pressure at node 𝑢.
Finally, we need to model the mixing of different inflowing water temperatures

at a node of the network. In [18], a formulation of the required nodal mixing
constraints has been introduced for general district heating networks, which is
based on analogous models for natural gas networks; see, e.g., [34, 14, 10]. In general
network structures, which can also contain cycles, the directions of water flow are not
known in advance. This leads to nonsmooth constraints that introduce significant
additional hardness to the overall problem. Due to our simplifying assumption
of only considering tree-shaped networks (i.e., the graphs of the forward and the
backward-flow part of the network are trees), we can fix the direction of the flow in
the pipes in advance. This is explained by the fact that a consumer cannot obtain
water if the flow direction in a pipe on the unique path from the depot to the
consumer changes. The same applies for the backward-flow part but in the opposite
direction. This also implies that we can w.l.o.g. assume that all mass flows in the
network are positive. Thus, the model introduced in [18] specifies to

𝑇𝑢 =

∑︀
𝑎∈𝛿in(𝑢) 𝑐p𝑞𝑎𝑇𝑎,out∑︀

𝑎∈𝛿in(𝑢) 𝑐p𝑞𝑎
, 𝑢 ∈ 𝑉, (10a)

𝑇𝑢 = 𝑇𝑎(0), 𝑢 ∈ 𝑉, 𝑎 ∈ 𝛿out(𝑢). (10b)

Here, 𝑇𝑎,out stands for the water temperature at the outlet of arc 𝑎. For pipes, this
corresponds to 𝑇𝑎(𝐿𝑎). Equation (10a) is obtained by using the law of conservation
of energy. If 𝑐p is a constant throughout the network and the same for all pipes,
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we finally obtain

𝑇𝑢 =

∑︀
𝑎∈𝛿in(𝑢) 𝑞𝑎𝑇𝑎,out∑︀

𝑎∈𝛿in(𝑢) 𝑞𝑎
, 𝑢 ∈ 𝑉,

𝑇𝑢 = 𝑇𝑎(0), 𝑢 ∈ 𝑉, 𝑎 ∈ 𝛿out(𝑢).

2.4 Depot and Consumers

We now state the constraints modeling the depot and the consumers. For the
depot 𝑎d = (𝑢d, 𝑣d) we have,

𝑝𝑢d = 𝑝s, (11a)

𝑃p =
𝑞𝑎d

𝜌
(𝑝𝑣d − 𝑝𝑢d) , (11b)

𝑃w + 𝑃g = 𝑞𝑎d𝑐p
(︀
𝑇𝑎,out − 𝑇𝑎,in

)︀
. (11c)

Here, 𝑇𝑎,in and 𝑇𝑎,out represent the inflow and outflow water temperature at the
depot. Moreover, 𝑝s stands for the stagnation pressure. The stagnation pressure,
to which the depot’s inflow pressure is set, leads to pressure values in the entire
network that are uniquely determined by the pressure loss constraints (4). The
variables 𝑃p, 𝑃w, and 𝑃g stand for the power needed to increase the water pressure,
the power used for heating the water obtained by waste incineration, and the
power produced by burning natural gas. As one can see, power consumption mainly
depends on the products of temperature or pressure differences and the mass flow.

The constraints modeling consumers 𝑎 = (𝑢, 𝑣) read

𝑃𝑎 = 𝑞𝑎𝑐p
(︀
𝑇𝑎,out − 𝑇𝑎,in

)︀
, 𝑎 ∈ 𝐴e

c, (12a)

𝑥𝑎𝑃𝑎 = 𝑞𝑎𝑐p
(︀
𝑇𝑎,out − 𝑇𝑎,in

)︀
, 𝑎 ∈ 𝐴c

c, (12b)

𝑇𝑎,out = 𝑇bf, 𝑎 ∈ 𝐴c, (12c)

𝑇𝑎,in ≥ 𝑇ff
𝑎 , 𝑎 ∈ 𝐴c, (12d)

𝑝𝑣 ≤ 𝑝𝑢, 𝑎 ∈ 𝐴c. (12e)

In (12a) and (12b), the parameter 𝑃𝑎 stands for the average power demand of the
consumer. Additionally, the binary variable 𝑥𝑎 ∈ {0, 1} is introduced for deciding if
arc 𝑎 ∈ 𝐴c

c is connected or not. We show in Section 2.5 that 𝑥𝑎 is also used to force
a zero mass flow in arc 𝑎 if the decision is made to not connect 𝑎 (𝑥𝑎 = 0). Since in
this case, the right-hand side of (12b) is zero, we multiply the left-hand side by 𝑥𝑎

to ensure the validity of the constraint. The parameter 𝑇bf is the consumer’s outlet
water temperature and is the same for all consumers. The parameter 𝑇ff

𝑎 represents
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the contractually fixed lower bound of the consumer’s inflow temperature. Finally,
Constraint (12e) implies that the outlet pressure of the consumer is not greater
than its inlet pressure.

2.5 Bounds

We now introduce bounds on the variables of our model and make a distinction
between existing and candidate arcs if needed. First, we state the bounds on mass
flow,

0 ≤ 𝑞𝑎 ≤ 𝑞+𝑎 , 𝑎 ∈ 𝐴e
ff ∪𝐴e

bf ∪𝐴e
c, (13a)

0 ≤ 𝑞𝑎 ≤ 𝑥𝑎𝑞
+
𝑎 , 𝑎 ∈ 𝐴c

ff ∪𝐴c
bf ∪𝐴c

c, (13b)

where the parameters 𝑞+𝑎 define upper bounds on the mass flow and are usually
imposed for avoiding pipe damages as well as excessive noise emissions. In the
latter constraint we again use the binary variables 𝑥𝑎 ∈ {0, 1} for all possibly built
arcs 𝑎 ∈ 𝐴c

ff ∪𝐴c
bf ∪𝐴c

c. Thus, this constraint obviously enforces 𝑞𝑎 = 0 for 𝑎 ∈ 𝐴c

if 𝑥𝑎 = 0; cf. (12b). Note also that this immediately implies 𝑣𝑎 = 0 as well. Next,
we introduce bounds on the nodal pressure variables

0 ≤ 𝑝𝑢 ≤ 𝑝+𝑢 , 𝑢 ∈ 𝑉. (14)

Moreover, we have bounds on the nodal water temperature, i.e.,

𝑇𝑢 ∈ [𝑇−
𝑢 , 𝑇+

𝑢 ], 𝑢 ∈ 𝑉. (15)

Finally, we incorporate bounds on the power consumption, i.e.,

𝑃p ∈ [0, 𝑃+
p ], 𝑃w ∈ [0, 𝑃+

w ], 𝑃g ∈ [0, 𝑃+
g ]. (16)

2.6 Candidate Pipes

For candidate pipes, we need to make some adaptions to the equations presented
in Section 2.2. For existing pipes, the hydraulic effects are modeled using (4), i.e.,

𝑝𝑣 − 𝑝𝑢 + 𝐿𝑎𝑔𝜌ℎ
′
𝑎 + 𝜆𝑎

|𝑣𝑎|𝑣𝑎𝜌𝐿𝑎

2𝐷𝑎
= 0,

and by the constraint 𝑓approx = 0 as discussed at the end of the Section 2.2.
Obviously, both constraints need to be present if a candidate pipe 𝑎 = (𝑢, 𝑣) ∈
𝐴c

ff∪𝐴c
bf is decided to be installed. However, if the pipe is not built, these constraints
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need to be de-activated. To this end, we introduce a binary variable 𝑥𝑎 ∈ {0, 1} for
every candidate pipe with 𝑥𝑎 = 0 if the pipe is not built and 𝑥𝑎 = 1 if it is built.
With this decision variable at hand, we then restate the momentum equation as

𝑝𝑣 − 𝑝𝑢 + 𝐿𝑎𝑔𝜌ℎ
′
𝑎 + 𝜆𝑎

|𝑣𝑎|𝑣𝑎𝜌𝐿𝑎

2𝐷𝑎
≤ (1− 𝑥𝑎)𝑀

1
𝑎 , (17a)

𝑝𝑣 − 𝑝𝑢 + 𝐿𝑎𝑔𝜌ℎ
′
𝑎 + 𝜆𝑎

|𝑣𝑎|𝑣𝑎𝜌𝐿𝑎

2𝐷𝑎
≥ −(1− 𝑥𝑎)𝑀

2
𝑎 (17b)

with suitably large constants 𝑀1
𝑎 , 𝑀2

𝑎 that can be chosen as

𝑀1
𝑎 = 𝑝+𝑣 − 𝑝−𝑢 + 𝐿𝑎𝑔𝜌ℎ

′
𝑎,

𝑀2
𝑎 = 𝑝−𝑣 − 𝑝+𝑢 + 𝐿𝑎𝑔𝜌ℎ

′
𝑎.

Note that the friction part of the momentum equation (4) can be ignored due to
the implied bounds in (13b). Interestingly, an analogous big-𝑀 formulation is not
required for the approximation of the thermal energy equation; see Section 3.

2.7 Valid Inequalities for Candidate Arcs

In this section, we briefly derive valid inequalities for the binary expansion decision
variables of the model. These additional inequalities are not required to obtain a
correct model but we will later show that they greatly help global solvers to solve
the problem.

We split the description of the inequalities into three cases and start with a
candidate pipe 𝑎 ∈ 𝐴c

ff in the forward-flow part of the network. Let 𝑃 (𝑎) ⊆ 𝐴c
ff

be the set of arcs of the path connecting 𝑎 to the existing forward-flow network.
This path is unique since we consider tree-shaped networks. The valid additional
constraints

𝑥𝑎 ≤ 𝑥�̄�, �̄� ∈ 𝑃 (𝑎), (18)

then model that all pipes on the way from the existing forward-flow part of the
network to the newly built pipe also need to be built.

For a candidate pipe 𝑎 ∈ 𝐴c
bf in the backward-flow part of the network, the

idea and the valid inequalities are the same. The only difference is that the arcs in
the path 𝑃 (𝑎) are now part of the backward-flow network and are oriented in the
other direction compared to the path in the forward-flow network.

Third and finally, if 𝑎 = (𝑢, 𝑣) ∈ 𝐴c
c is a potential new consumer, we combine

both ideas and introduce (18) for the forward-flow part of the network (using the
path that connects the consumer’s inlet node 𝑢 ∈ 𝑉ff with the existing forward-flow
part of the network) as well as for the backward-flow part of the network (using
the path that connects the consumer’s outlet node 𝑣 ∈ 𝑉bf with the existing
backward-flow part of the network).
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2.8 Objective Function

The objective function to maximize reads
∑︁

𝑎∈𝐴c
c

𝑃𝑎𝑤𝜋𝑥𝑎 −
∑︁

𝑎∈𝐴c

𝐶inv
𝑎 𝑥𝑎 − 𝑤 (𝐶p𝑃p + 𝐶w𝑃w + 𝐶g𝑃g) , (19)

where 𝑤 = 24 and 𝜋, 𝐶inv
𝑎 , 𝐶p, 𝐶w, and 𝐶g stand for the energy price per kWh,

the daily annuity costs of arc 𝑎, the price per pressure increase (measured in kWh),
the price of energy from waste incineration per kWh, and the price of energy from
gas per kWh, respectively. The first part of the objective, corresponding to the
candidate consumer payments, models how much a new consumer pays in average
over a day if connected to the network. The second part, which corresponds to
investment costs, represents how much is paid per day in order to install arc 𝑎 ∈ 𝐴c.
The last part, corresponding to the power cost, represents how much the network
operator pays to satisfy the energy demand of the possibly extended district heating
system. Here, we abstract from operation and maintenance costs.

2.9 Model Summary

For later reference, we now finally state the complete optimization problem for
computing the optimal investments to connect new consumers to an existing district
heating network:

max objective (19), (20a)

s.t. stationary incompressible Euler equation (4) or (17), (20b)

stationary thermal energy equation (7), (20c)

mass conservation (8), (20d)

pressure continuity (9), (20e)

temperature mixing equations (10), (20f)

depot constraints (11), (20g)

consumer constraints (12), (20h)

mass flow bounds (13), (20i)

pressure bounds (14), (20j)

temperature bounds (15), (20k)

power bounds (16), (20l)

valid binary inequalities (18). (20m)

All variables are listed in Table 2.
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Tab. 2: Variables of Problem (20)

Variable Index Set

𝑃p, 𝑃w, 𝑃g —
𝑥𝑎 𝑎 ∈ 𝐴c

ff ∪𝐴c
bf ∪𝐴c

c
𝑣𝑎 𝑎 ∈ 𝐴ff ∪𝐴bf
𝑞𝑎 𝑎 ∈ 𝐴ff ∪𝐴bf ∪𝐴c ∪ {𝑎d}
𝑝𝑢, 𝑇𝑢 𝑢 ∈ 𝑉

𝑝𝑎(0), 𝑝𝑎(𝐿𝑎) 𝑎 ∈ 𝐴ff ∪𝐴bf
𝑇𝑎,in, 𝑇𝑎,out (resp. 𝑇𝑎(0), 𝑇𝑎(𝐿𝑎)) 𝑎 ∈ 𝐴

3 Approximation of the Thermal Energy
Equation

We now deduce the approximation of the solution of the thermal energy equation
for all pipes 𝑎 = (𝑢, 𝑣) ∈ 𝐴ff ∪𝐴bf. As already mentioned in Section 2.2, the main
goal is to obtain a constraint using a single symbolic expression (instead of the
case distinction in (7)) so that inflow and outflow water temperature of a pipe are
coupled to the water flow through the pipe as given in (7). To this end, we define
the function 𝑓(𝑣𝑎, 𝑇𝑎(0), 𝑇𝑎(𝐿𝑎)), which depends on the three discussed physical
quantities, based on Equation (7) as

𝑓(𝑣𝑎, 𝑇𝑎(0), 𝑇𝑎(𝐿𝑎)) :=

⎧
⎨
⎩

(︀
𝑇𝑎(0)− 𝑇soil

)︀
𝑒
− 4𝑈𝑎𝐿𝑎

𝑐p𝜌𝐷𝑎𝑣𝑎 + 𝑇soil − 𝑇𝑎(𝐿𝑎), 𝑣𝑎 > 0,

𝑇soil − 𝑇𝑎(𝐿𝑎), 𝑣𝑎 = 0.

Ideally, we would like to incorporate the constraint 𝑓(𝑣𝑎, 𝑇𝑎(0), 𝑇𝑎(𝐿𝑎)) = 0 that
couples the inlet and outlet temperature of a pipe with the velocity of hot water
flow in our model. However, this is not possible directly due to the function 𝑓

being defined via a case distinction. Thus, we design a continuous ansatz function
𝑓approx(𝑣𝑎, 𝑇𝑎(0), 𝑇𝑎(𝐿𝑎)) satisfying the following conditions:
(i) If 𝑣𝑎 = 0, then 𝑓approx(𝑣𝑎, 𝑇𝑎(0), 𝑇𝑎(𝐿𝑎)) = 0 reduces to 𝑇𝑎(𝐿𝑎) = 𝑇soil.
(ii) The approximation 𝑓approx is continuous and as close as possible to 0 for all

reasonable combinations of 𝑣𝑎 ∈ [0, 𝑣+𝑎 ] and 𝑇𝑎(0), 𝑇𝑎(𝐿𝑎) ∈ [𝑇−
𝑣 , 𝑇+

𝑣 ] that
satisfy the thermal energy equation.

The main rationale is to use a polynomial of degree 𝑑 as the ansatz function, i.e.,

𝑓approx(𝑣𝑎, 𝑇𝑎(0), 𝑇𝑎(𝐿𝑎)) =
∑︁

(𝑘,𝑙,𝑚)∈Γ𝑑

𝛼𝑘𝑙𝑚 𝑣𝑘𝑎 𝑇𝑎(0)
𝑙 𝑇𝑎(𝐿𝑎)

𝑚,
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Fig. 2: Solution of the thermal energy equation (left figures) and its degree-2 polynomial
approximation (right figures) for 𝑈𝑎 = 0.5Wm−2 K−1, 𝑐p = 4181.3 J kg−1 K−1, 𝜌𝑎 =

1000 kgm−3, 𝐷𝑎 = 0.07m, 𝐿𝑎 = 400m, and 𝑇soil = 278K. For larger values of 𝑣𝑎
(top figures) the approximation is nearly identical to the original thermal energy equation
solution. Whereas the approximation does not possess similar curvature for values of 𝑣𝑎
close to 0 (bottom figures).
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with coefficients 𝛼𝑘𝑙𝑚 and

Γ𝑑 :=
{︁
(𝑘, 𝑙,𝑚) ∈ N3 : 𝑘 + 𝑙 +𝑚 ≤ 𝑑

}︁
.

However, it is reasonable to slightly modify this ansatz and to replace it with

𝑓approx(𝑣𝑎, 𝑇𝑎(0), 𝑇𝑎(𝐿𝑎)) =
∑︁

(𝑘,𝑙,𝑚)∈Θ𝑑

𝛼𝑘𝑙𝑚 𝑣𝑘𝑎 𝑇𝑎(0)
𝑙 𝑇𝑎(𝐿𝑎)

𝑚 + 𝑇𝑎(𝐿𝑎)− 𝑇soil

(21)
and

Θ𝑑 :=
{︁
(𝑘, 𝑙,𝑚) ∈ N3 : 𝑘 ̸= 0 and 𝑘 + 𝑙 +𝑚 ≤ 𝑑

}︁
.

By doing so, the Condition (i) above is always satisfied by construction. Let us
also note that Condition (i) is sufficient to exclude the trivial solution 𝛼𝑘𝑙𝑚 = 0

for all (𝑘, 𝑙,𝑚) ∈ Θ𝑑. To satisfy the Condition (ii) we compute the polynomial’s
coefficients 𝛼𝑘𝑙𝑚 in (21) using the least-squares fit

min
𝛼

∑︁

𝑖∈𝐼

𝑓approx(𝑣
𝑖
𝑎, 𝑇𝑎(0)

𝑖, 𝑇𝑎(𝐿𝑎)
𝑖)2.

For our computations, we use a large number of equidistant vectors

(𝑣𝑎, 𝑇𝑎(0)) ∈ [0, 𝑣+𝑎 ]× [𝑇−
𝑣 , 𝑇+

𝑣 ]

and compute the corresponding outlet temperature 𝑇𝑎(𝐿𝑎) by solving the thermal
energy equation. The resulting vectors in R3 then form the set 𝐼 for the least-squares
fit.

Figure 2 shows the degree-2 approximation for a certain pipe. One can see
that the approximation is pretty accurate. However, for positive values of 𝑣𝑎 very
close to zero the approximation is not able to reflect the curvature of the original
thermal energy equation.

We close this section with a discussion of the introduced approximation of
the solution of the stationary thermal energy equation in the context of candidate
pipes. In Section 2.6, we explicitly reformulated the momentum equation for
candidate pipes. This is not required for the approximation of the thermal energy
equation’s solution since we can always include the corresponding constraint as
it is—independent of whether the candidate pipe is built or not. The reason is as
follows. If a candidate pipe is not built, the constraints in (13) force the velocity,
and thus the mass flow, to zero. However, in this case, 𝑓approx(0, 𝑇𝑎(0), 𝑇𝑎(𝐿𝑎)) = 0

implies 𝑇𝑎(𝐿𝑎) = 𝑇soil; see (21). Since 𝑇soil ∈ [𝑇−
𝑢 , 𝑇+

𝑢 ] always holds, no adaptions
are required for the thermal modeling on candidate pipes.

To conclude, the final model is given by Problem (20) with Constraint (7)
replaced by 𝑓approx(0, 𝑇𝑎(0), 𝑇𝑎(𝐿𝑎)) = 0 for every pipe 𝑎 ∈ 𝐴ff ∪𝐴bf.
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4 Numerical Results

In this section, we first describe the software and hardware setup that we use for
our numerical tests, then present a basic test case, and discuss its numerical results.
Afterward, we slightly modify the network’s setup to carry out a sensitivity analysis
that allows to conclude on the key decision parameters for optimal district heating
network expansion. To the best of our knowledge, we are the first to consider a
district heating network expansion problem equipped with the level of physical
and technical detail as discussed in this paper. Thus, the aim of the following
discussion of the numerical results is to showcase the impact of certain key aspects
on the expansion decisions. This means that we try to answer the question on
what the governing factors for expansions are if an accurate nonlinear physics
model is used. To this end, we choose a network size that is non-trivial but that
still allows to discuss the physical and investment solution in detail for different
parameterizations of the problem at hand.

4.1 Software and Hardware Setup

We implemented the model in Python v.3.7.4 using the Pyomo v.5.6.8 package
[16, 15] and solve the resulting MINLPs using ANTIGONE, which is interfaced
via the Pyomo-GAMS interface. We also tested other global MINLP solvers but
the branch-and-cut based global optimization solver ANTIGONE turned out to be
the most reliable and best performing one. All details of the algorithms inside
ANTIGONE can be found in [25] and the references therein. In our computations,
we use a relative optimality gap of 0.1%. All other parameters are the default
values of GAMS. The computations are executed on a computer with an Intel(R)
Core(TM) i7-8550U processor with eight threads at 1.90GHz and 16GB RAM.

4.2 Test Cases

We carry out our case study on the network shown in Figure 3. This network is
based on the AROMA network used in [18], which we adapt and extend to our needs
of computing optimal district heating network expansion decisions. In particular,
the original network from the literature is modified so that it is tree-shaped, while
keeping its other major characteristics. Table 3 (left) provides the diameters of all
pipes in the forward-flow part of the network. The diameters of the corresponding
pipes of the backward-flow part of the network are chosen identical.
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F0 F1

F2 F3

F4 F5

F6 F7 F8 F9

F10F11 F12

F13F14 F15

Fig. 3: The tree-shaped forward-flow part of the network used in our case study. Solid
lines are existing pipes and dashed lines correspond to candidate pipes. The node F0 is the
depot.

As introduced previously, the parameter 𝑃𝑎 represents the average demand of
the consumer 𝑎 ∈ 𝐴c; see Table 3 (right). The costs for connecting a new consumer
are 100 000e. The investment costs per meter of pipe as well as the mass flow’s
upper bound (both depending the chosen diameter) are given in Table 4 and taken
from [28]. The costs 𝐶inv

𝑎 in (19) thus correspond to the daily annuity of 100 000e
for consumers 𝑎 ∈ 𝐴c

c and to the daily annuity of 𝐶inv𝐿𝑎 for 𝑎 ∈ 𝐴c
ff ∪𝐴c

bf, where
𝐶inv is given in Table 4.

We now discuss the operating costs of the depot. The price of waste incineration,
of gas combustion, and the price of electricity (for increasing the pressure) are given
by 𝐶w = 0e/kWh, 𝐶g = 0.0415e/kWh, and 𝐶p = 0.165e/kWh, respectively.
These cost data are also taken from [28]. A discount factor of 3% per year is used
to compute daily annuities. The energy selling price 𝜋, see (19), is based on [37].
We suppose that no upper bound on 𝑃g and 𝑃p exists. Contrarily, we impose a
bound of 500 kW for 𝑃w.

Finally, the approximation of the solution of the thermal energy equation is
chosen to be of degree 2 and is computed separately for each pipe using a fine grid
of 32 000 sample points on the domain imposed by the bounds on velocities and
inlet temperatures; cf. Section 3. We also carried out an extensive computational
sensitivity analysis to check if the results qualitatively change if the approximation
is changed. To this end, we tested approximations obtained from a range between
8000 to 128 000 sample points. Since all results stayed very much the same, we do
not discuss this sensitivity analysis in more detail.

4.3 Discussion of the Results

We start by discussing the results obtained for the parameterization of the problem
discussed above. Figure 4 illustrates the solution, i.e., the solution of (20), in the
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Tab. 3: Left: Diameters of all pipes 𝑎 ∈ 𝐴ff in the forward-flow part of the network. Right:
Average demands 𝑃𝑎 for all consumers 𝑎 ∈ 𝐴c.

Pipe 𝐷 (in mm)

(F0,F1) 107
(F1,F2) 107
(F1,F6) 107
(F2,F3) 83
(F2,F13) 70
(F3,F4) 83
(F4,F5) 70
(F5,F10) 70
(F6,F7) 83
(F7,F8) 70
(F8,F9) 70

(F10,F11) 70
(F10,F12) 70
(F13,F14) 70
(F13,F15) 70

Consumer 𝑃 (in kW)

(F2,B2) 200.00
(F3,B3) 600.00
(F5,B5) 150.00
(F6,B6) 666.66
(F8,B8) 200.00
(F9,B9) 183.33

(F11,B11) 183.33
(F12,B12) 183.33
(F14,B14) 183.33
(F15,B15) 183.33

Tab. 4: Investment costs per pipe length and upper bounds on mass flow for all pipe diame-
ters.

𝐷𝑎 (mm) 70 83 107

𝐶 inv (e/m) 537.0 616.0 760.0
𝑞+𝑎 (kg s−1) 24.6 38.9 68.3
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Fig. 4: Illustration of the solution of Problem (20). Solid arcs represent existing and newly
constructed candidate pipes whereas dashed arcs represent candidate pipes that are not
built. The figure also provides parts of the physical solution (𝑇 in K and 𝑝 in bar at nodes
and 𝑞 in kg s−1 on arcs).
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Tab. 5: Relevant parameters of the optimal solution.

Objective (e/day) 𝑃t (kW) 𝑃p (kW) 𝑃w (kW) 𝑃g (kW) 𝑃tl (kW)

−1380.02 2550.0 2.84 500.0 2149.87 99.87

forward-flow part of the network. The model contains 209 variables, thereof 19
being binary,1 and 599 constraints. ANTIGONE takes 697 seconds to solve this
problem. Note that, if we do not incorporate the additional valid binary inequalities
derived in Section 2.7, ANTIGONE needs 5750 seconds to solve the problem. Thus,
these inequalities lead to a speed-up factor larger than 8 on the tested instance.
Besides Figure 4, Table 5 shows some relevant parameter values as part of the
optimal solution, which we will later discuss in detail. Besides the already defined
ones, these are the total connected power load

𝑃t :=
∑︁

𝑎∈𝐴e
c

𝑃𝑎 +
∑︁

𝑎∈𝐴c
c

𝑥𝑎𝑃𝑎

and the thermal power losses 𝑃tl in the system, which are given by

𝑃tl := 𝑃w + 𝑃g − 𝑃t.

The solution has a rather high pressure at the depot’s outlet node of 7.66 bar.
This allows to increase the water’s velocity in the network and, thus, the mass
flow, which in turn allows to reduce temperature differences at the consumers; cf.
(12a) or (12b). Thus, the optimal operation in this case is based on significantly
increasing the pressure (from the stagnation pressure of 5 bar to 7.66 bar) at the
rather high price 𝐶p = 0.165e/kWh (compared to the lower values for 𝐶w and 𝐶g).
This increased outlet pressure at the depot leads to larger mass flows in the system.
Thus, the required temperature differences at the consumers can be decreased.
This, together with the resulting smaller thermal losses in the pipes, cf. (5), leads
to comparably small overall thermal losses in the system, which are coped with
by increasing the water temperature at the depot at the rather low prices for 𝐶w

and 𝐶g.
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Fig. 5: Solution of the optimization problem when 𝑃𝑎 = 150 kW for all 𝑎 ∈ 𝐴c
c.

4.3.1 The Impact of Heat Demand on Expansion Decisions

In Figure 5, we plot the solution for the forward flow network in case that all
average consumer demands are reduced to 150 kW. It is clearly visible that this
has a strong impact on the investment decision: no new consumer is connected to
the network. Although being very important, the effect is rather obvious. Since the
network operator mainly earns money by the consumption of connected households,
significantly decreased demand leads to less income and thus the potentially new
consumers are not worth to be connected.

4.3.2 The Impact of the Distance Between the Existing Network and the New
Consumer

We measure the distance of a new consumer to the existing network in terms of
the aggregated length of the required new pipes for connecting the new consumer.
This distance influences how much the retailer pays to connect the consumer (at
least) in two ways. First, the farther away a consumer is from the existing network,
the more needs to be paid to install the pipes that connect the new consumer to
the network. This immediately influences the objective function; cf. the second
term in (19). Second, larger distances lead to larger power and pressure losses in
the system: The longer a pipe, the more thermal and pressure losses occur; see the
solution (7) of the thermal energy equation and the momentum equation (4).

This explains why consumer (F9,B9) is not connected to the existing network.
Indeed, we see that this consumer is located far away from the original network
and thus induces high pipe costs and losses. If we, for instance, sufficiently increase

1 Note that we have 7 candidate pipes both in the forward and the backward flow network
together with 5 binary variables for the potentially connected new consumers.



MINLP for District Heating Network Expansion 23

F0

p = 7.79
T = 393.27

F1

p = 7.14
T = 393.07

F2

p = 7.02
T = 392.88

F3

p = 6.65
T = 392.49

F4

p = 6.6
T = 392.02

F5

p = 6.45
T = 391.46

F6

p = 7.08
T = 392.8

F7

p = 6.99
T = 392.0

F8

p = 6.74
T = 391.19

F9

p = 6.64
T = 389.92

F10

p = 6.41
T = 391.07

F11

p = 6.39
T = 390.21

F12

p = 6.39
T = 390.21

F13

p = 6.98
T = 392.48

F14

p = 6.97
T = 391.58

F15

p = 6.97
T = 391.58

q
=

1.5

q
=

1.5
3

q = 1.4

q = 0.77 q = 0.77

q = 0.75 q = 0.75

q = 11.74

q
=
6.85

q
=
4.
89

q = 4.56

q
=
2.
15

q = 2.15

q = 2.22 q = 2.22

Fig. 6: Solution of the optimization problem when 𝑃(F9,B9) = 350 kW. The arc (F9,B9) is
connected since its demand is high enough to overcome the pipe installation costs.
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Fig. 7: Solution of the optimization problem when 𝑈𝑎 is set to 0.8Wm−1 K−2 for all 𝑎
in 𝐴c

c. No candidate consumers are connected since the additional thermal losses make it
financially uninteresting.

the power demand or decrease the distance from this consumer to the existing
network, it becomes financially worth to be connect this consumer as shown in
Figure 6, which is obtained for 𝑃(F9,B9) = 350 kW.

4.3.3 The Impact of Power Losses

Pressure and thermal losses represent the power loss in the network. Pressure
losses (measured in power) correspond to 𝑃p since this power is required to propel
the water flow in the network. They represent approximately 0.1% of the total
power consumption in the solution (see Table 5) and thus do not have a significant
importance for the expansion decisions. Thermal power losses 𝑃tl represent 3.76%

of the total power consumption in the solution and, hence, are not negligible. To
illustrate the importance of thermal losses, we increase the heat transfer coefficient
𝑈𝑎 of all candidate pipes from 0.5 to 0.8Wm−1 K−2. The result is shown in
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Figure 7, where no candidate consumer is connected to the existing network at all.
This shows that considering thermal power when making expansion decisions is
relevant, especially if different insulation techniques for water pipes are available.

5 Conclusion

In this paper, we presented a mixed-integer nonlinear optimization model for the
district heating network expansion problem in case of tree-shaped networks. To
the best of our knowledge, mixed-integer expansion decisions for district heating
networks have not been combined before in the literature with a nonlinear modeling
of thermal and hydraulic phenomena as accurate as in this paper. Whereas the
accurate incorporation of the hydraulic effects is rather straightforward, the tackling
of the energy equation modeling the thermal effects is more complicated. Here, we
developed a novel polynomial approximation that is well tailored for optimization.
Finally, in our case study we identified three main parameters that mainly govern
the expansion decisions:
(i) The estimated average demand of the new consumer. Thus, it is important to

have an accurate estimation of the future consumption of households. There
are many papers in the literature that estimate the future heat demand of
households; see, e.g., [39] for a case study in Sweden or [22, 27] for more
general approaches for heat demand estimation. Even more relevant in our
context, the authors of [30] try to predict heat demand based on consumer
and building characteristics. Based on these predictions, they also estimate
the profitability of connecting these new consumers by computing probability
distributions to see if these candidate consumers have a high chance of being
connected. However, the authors do not consider any network operation or
expansion. In the light of the importance of the estimated demand, a highly
reasonable topic of future research is to combine these two different branches
of literature—namely heat future demand estimation and network expansion.

(ii) The distance of the candidate consumer to the existing network. Thus, one
needs to accurately evaluate the pipe building costs and the chosen network
layout if multiple consumers shall be connected. This aspect is, in principle,
also covered in other papers on district heating networks such as [4] by also
considering a price per length of the newly built pipes. However, we are, to
the best of our knowledge, the first who measure these effects in the context of
nonlinear and non-isothermal physics models.
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(iii) Finally, the discussion of thermal power losses highlights the importance of
a good pipe insulation. To the best of our knowledge, this aspect was not
discussed in the literature before in this context.

To obtain a tractable model, we needed to simplify the problem. Note, however,
that we still end up with a nonconvex mixed-integer nonlinear model, which is
computationally very challenging. The most important assumption is that we
restrict ourselves to the stationary case. Thus, we abstract from time-dependent, i.e.
dynamic, effects of physics as well as from certain depot dynamics such as ramping
constraints. Second, we only consider a single power-load scenario in the model.
Incorporating multiple scenarios, for instance by using stochastic optimization,
would allow for a better representation of future demands—and thus, most likely,
for a better investment decision. However, this would put a significant additional
computational burden. Third, we restricted ourselves to the case of tree-shaped
networks to avoid complicating models for temperature mixing at the nodes of the
network. Possible future work might also include the further exploitation of this
tree-like structure to obtain more effective solution approaches for the problem
discussed in this paper. If more general networks are considered, flow directions are
not known in advance and one needs mixing models that are nonsmooth and lead
to the violation of standard constraint qualifications of nonlinear optimization; see,
e.g., [18] for the details. Finally, we abstracted from also choosing the diameters of
newly built pipes, which could also be incorporated in the model. All the mentioned
aspects are out of the scope of this article but part of our future work.
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A Proof of Lemma 1

Two cases are considered for solving the ODE. First, we consider 𝑣𝑎 = 0. Then, (5)
reduces to

4𝑈𝑎

𝑐p𝜌𝐷𝑎
(𝑇𝑎(𝑥)− 𝑇soil) = 0, 𝑥 ∈ [0, 𝐿𝑎].

This obviously leads to the first case in (6).
Next, we consider the case 𝑣𝑎 > 0. In this case, (5) can be rewritten as

d𝑇𝑎
d𝑥

(𝑥) +
4𝑈𝑎

𝑐p𝜌𝐷𝑎𝑣𝑎
𝑇𝑎(𝑥) =

4𝑈𝑎

𝑐p𝜌𝐷𝑎𝑣𝑎
𝑇soil, 𝑥 ∈ [0, 𝐿𝑎].

We know from classical ODE theory, see, e.g., [13], that the first-order ODE of the
form

d𝑦(𝑥)

d𝑥
+ 𝑎𝑦(𝑥) = 𝑏,

with constants 𝑎 and 𝑏 has the solution

𝑦(𝑥) = 𝐶𝑒−𝑎𝑥 +
𝑏

𝑎
,

with 𝐶 being another constant. This then allows to derive the second case of (6).
To prove continuity and since both cases in (6) are composed of continuous

functions it suffices to see that

lim
𝑣𝑎→0

𝑇𝑎(𝑥; 𝑣𝑎) = 𝑇soil = 𝑇𝑎(𝑥; 0)

for all 𝑥 ∈ [0, 𝐿𝑎]. This concludes the proof.
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Adaptive Nonlinear Optimization of District Heating
Networks Based on Model and Discretization Catalogs

Hannes Dänschel, Volker Mehrmann, Marius Roland,
and Martin Schmidt

Abstract. We propose an adaptive optimization algorithm for operating
district heating networks in a stationary regime. The behavior of hot water
flow in the pipe network is modeled using the incompressible Euler equations
and a suitably chosen energy equation. By applying different simplifications
to these equations, we derive a catalog of models. Our algorithm is based
on this catalog and adaptively controls where in the network which model
is used. Moreover, the granularity of the applied discretization is controlled
in a similar adaptive manner. By doing so, we are able to obtain optimal
solutions at low computational costs that satisfy a prescribed tolerance w.r.t.
the most accurate modeling level. To adaptively control the switching between
different levels and the adaptation of the discretization grids, we derive error
formulas and a posteriori error estimators. Under reasonable assumptions we
prove that the adaptive algorithm terminates after finitely many iterations.
Our numerical results show that the algorithm is able to produce solutions for
problem instances that have not been solvable before.

1. Introduction

An efficient and sustainable energy sector is at the core of the fight against the
climate crisis. Thus, many countries around the world strive towards an energy
turnaround with the overarching goal to replace fossil fuels with energy from
renewable resources such as wind and solar power. However, one then faces issues
with the high volatility of the fluctuating renewable resources. To overcome this
fluctuating nature of wind and solar power, two main approaches are currently seen
as the most promising ones: (i) the development and usage of large-scale energy
storage systems as well as (ii) sector-coupling.

In this paper, we consider the computation of optimal operation strategies for
district heating networks. These networks are used to provide customers with hot
water in order to satisfy their heat demand. Thus, a district heating network can
be seen both as a large-scale energy storage as well as a key element of successful
sector-coupling. The hot water in the pipes of a district heating network is heated
in so-called depots in which, usually, waste incineration is used as the primary heat
source. If, however, waste incineration is not sufficient for heating the water, gas
turbines are used as well. The hot water in the pipeline system can thus be seen
as an energy storage that could, for instance, also be filled using power-to-heat
technologies in time periods with surplus production of renewables. On the other
hand, heat-to-power can be used to smooth the fluctuating nature of renewables in
time periods with only small renewable production. Consequently, district heating
networks can be seen as sector-coupling entities with inherent storage capabilities.

To make such operational strategies for district heating networks possible, an
efficient control of the network is required that does not compromise the heat
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demand of the households that are connected to the network. However, a rigorous
physical and technical modeling of hot water flow in pipes leads to hard mathematical
optimization problems. At the core of these problems are partial differential equations
for modeling both water and heat transport. Additionally, proper models of the
depot and the households further increase the level of nonlinearity in the overall
model. Finally, the tracking of water temperatures across nodes of the network
leads to nonconvex and nonsmooth mixing models that put a significant burden on
today’s state-of-the-art optimization techniques.

In this paper, we consider the simplified setting of a stationary flow regime. For
closed-loop control strategies for instationary variants of the problem we refer to
[1, 24, 30] and to [12] for open-loop optimization approaches. Interestingly, the
literature on mathematical optimization for district heating networks is rather
sparse. An applied case study for a specific district heating network in South
Wales is done in [16] and [22] provides more a general discussion of technological
aspects and the potentials of district heating networks. In [26], the authors follow a
first-discretize-then-optimize approach for the underlying PDE-constrained problem.
For the relation between district heating networks and energy storage aspects we
refer to [4, 10, 29] and the references therein. Stationary models of hot water flow
are also considered in studies on the design and expansion of networks as, e.g., in [2,
5, 23]. Numerical simulation of district heating networks using a local time stepping
method is studied in [3] and model order reduction techniques for the hyperbolic
equations in district heating networks are discussed in [20] or [19, 21]. Finally, a
port-Hamiltonian modeling approach for district heating networks is presented and
discussed in [11].

Despite the mentioned simplification of considering stationary flow regimes, the
optimization problems at hand are still large-scale and highly nonlinear mathematical
programs with complementarity constraints (MPCCs) that are constrained by
ordinary differential equations (ODEs). It turns out that these models are extremely
hard to solve for realistic or even real-world district heating networks if they
are presented to state-of-the-art optimization solvers. Our contribution is the
development of an adaptive optimization algorithm that controls the modeling
and the discretization of the hot water flow equations in the network. A similar
approach has already been developed and tested for natural gas networks in [14].
The main rationale is that simplified (and thus computationally cheaper) models
can lead to satisfactory (w.r.t. their physical accuracy) results for some parts of
the network whereas other parts require a highly accurate modeling to obtain the
required physical accuracy. The problem, however, is that it is not known up-front
where which kind of modeling is appropriate. Our adaptive algorithm is based on
(i) a catalog of different models of hot water flow and on (ii) different discretization
grids for the underlying differential equations. The proposed method then controls
the choice of the model and the discretization grid separately for every pipe in the
network. The switching between different models and discretization grids is based
on rigorous error measures so that we obtain a finite termination proof stating that
the method computes a locally optimal point that is feasible w.r.t. the most accurate
modeling level and a prescribed tolerance. Besides these theoretical contributions,
we also show the effectiveness of our approach in practice and, in particular, illustrate
that instances on realistic networks can be solved with the newly proposed method
that have been unsolvable before.

The remainder of the paper is structured as follows. In Section 2 we present our
modeling of district heating networks and derive the modeling catalog for hot water
flow as well as the discretizations of the respective differential equations. After
this, we derive exact errors and error estimators in Section 3 both for modeling
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as well as discretization errors. These are then used in Section 4 to set up the
adaptive optimization algorithm and to prove its finite termination. The algorithm
is numerically tested in Section 5 before we close the paper with some concluding
remarks and some aspects of potential future work in Section 6.

2. Modeling

We model the district heating network as a directed and connected graph G =
(V,A), which has a special structure. First, we have a so-called forward-flow part
of the network, which is used to provide the consumers with hot water. Second,
the cooled water is transported back to the depot in the so-called backward-flow
part. These two parts are connected via the depot in which the cooled water is
heated again, and via the consumers who use the temperature difference to satisfy
the thermal energy demand in the corresponding household. The set of nodes of
the forward-flow part is denoted by Vff and the set of arcs of this part is denoted
by Aff, i.e., a = (u, v) ∈ Aff implies u, v ∈ Vff. In analogy, the set of nodes of the
backward-flow part is denoted by Vbf and the set of arcs of this part is denoted by Abf,
i.e., a = (u, v) ∈ Abf implies u, v ∈ Vbf. The depot arc is denoted by ad = (u, v)
with u ∈ Vbf and v ∈ Vff. The consumers are modeled with arcs a = (u, v) with
u ∈ Vff and v ∈ Vbf. Finally, all pipes of the forward and the backward flow part
are contained in the set of pipes Ap = Aff ∪Abf.

In the next subsection we present the model for all components of the network,
i.e., for pipes, consumers, and the depot.

2.1. Pipes. We now derive an approximation for the water flow in cylindrical pipes.
This derivation is based on the 1-dimensional compressible Euler equations [3, 11, 21]

0 =
∂ρa
∂t

+ va
∂ρa
∂x

+ ρa
∂va
∂x

, (1a)

0 =
∂(ρava)

∂t
+ va

∂(ρava)

∂x
+
∂pa
∂x

+
λa

2Da
ρa|va|va + gρah

′
a. (1b)

Equation (1a) is the continuity equation and models mass balance, whereas the
pressure gradient is described by the momentum equation (1b). Here and in what
follows, ρ denotes the density of water, v its velocity, and p its pressure. In (1), the
quantities are to be seen as functions in space (x) and time (t), i.e., for instance,
p = p(x, t). The diameter of a pipe a is denoted by Da, λa is the pipe’s friction
coefficient, and h′a denotes the slope of the pipe. Finally, g is the gravitational
acceleration.

The incompressibility of water is modeled as 0 = ρa
∂va
∂x , cf. [11], which implies

that
0 =

∂ρa
∂t

+ va
∂ρa
∂x

(2)

holds. Moreover, the further PDEs

0 =
∂ea
∂t

+ va
∂ea
∂x

+ pa
∂va
∂x
− λa

2Da
ρa|va|v2

a +
4kW
Da

(Ta − TW), (3a)

0 =
∂sa
∂t

+ va
∂sa
∂x

+
λaρa

2DaTa
|va|v2

a +
4kW
Da

(Ta − TW)

Ta
(3b)

model conservation of internal energy density e and entropy density s, respectively;
see [11]. The water’s temperature is denoted by Ta. The parameters kW and TW
are the heat transfer coefficient and the soil or pipe wall temperature.

The incompressible 1-dimensional Euler equations for the pipe flow arise from a
simplification in which the small change (in time) of the pressure energy, and the
(small) term of energy and power loss due to dissipation work have been neglected.
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If one adds these terms, then it is possible to reformulate these equations in a
port-Hamiltonian form [13]. Since the analysis of this energy-based formulation
is not complete, we will not consider this extension here. It will be considered in
future work.

To use the model in our optimization framework we consider the stationary
case. For this, all partial derivatives w.r.t. time are set to zero and System (1)–(3)
simplifies to

0 = ρa
dva
dx

, (4a)

0 = va
dρa
dx

+ ρa
dva
dx

, (4b)

0 = va
d(ρava)

dx
+

dpa
dx

+
λa

2Da
ρa|va|va + gρah

′
a, (4c)

0 = va
dea
dx

+ pa
dva
dx
− λa

2Da
ρa|va|v2

a +
4kW
Da

(Ta − TW), (4d)

0 = va
dsa
dx

+
λaρa

2DaTa
|va|v2

a +
4kW
Da

(Ta − TW)

Ta
. (4e)

Since ρa > 0 holds, Equation (4a) implies that va(x) = va is constant for all pipes.
Using this, (4b) leads to that the density ρa(x) = ρa is constant as well. In addition,
we set ρa = ρ for all arcs a of the network. With the mass flow

qa = Aaρva (5)

and constant velocities and densities we also have that qa(x) = qa is constant for
all pipes. In (5), Aa denotes the cross-sectional area of pipe a. By subsuming the
discussed simplifications we get the system

0 =
dpa
dx

+
λa

2Da
ρ|va|va + gρh′a, (6a)

0 = va
dea
dx
− λa

2Da
ρ|va|v2

a +
4kW
Da

(Ta − TW), (6b)

0 = va
dsa
dx

+
λaρ

2DaTa
|va|v2

a +
4kW
Da

(Ta − TW)

Ta
. (6c)

In Equation (6a), the pressure gradient term is the only term that depends on the
spatial position x. Hence, we obtain the stationary momentum and energy equation

0 =
pa(La)− pa(0)

La
+

λa
2Da

ρ|va|va + gρh′a, (M1a)

0 = va
dea
dx
− λa

2Da
ρ|va|v2

a +
4kW
Da

(Ta − TW). (M1b)

In the following, for our optimization framework, we do not consider the entropy
equation, which can be solved in a post-processing step once the optimal pressure
and internal energy values have been determined.

The system is closed by the state equations

ρ = 997 kg m−3, (7a)

Ta = θ2(e∗a)2 + θ1e
∗
a + θ0, (7b)

in which we set

e∗a :=
ea
e0
, e0 := 109 J m−3,

θ2 = 59.2453 K, θ1 = 220.536 K, θ0 = 274.93729 K.
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Equation (7b) is known to be a reasonable approximation for ea ∈ [0.2, 0.5] GJ m−3,
Ta ∈ [323, 403] K, and pa ∈ [5, 25] bar; see, e.g., [11].

2.1.1. Model Catalog. For the adaptive optimization method developed in this work
we employ a catalog of models. In this catalog, System (M1) represents the highest
or first modeling level, i.e., the most accurate one.

To derive the second modeling level, we neglect the (small) term λa/(2Da)ρv2
a|va|

and get

0 =
pa(La)− pa(0)

La
+

λa
2Da

ρ|va|va + gρh′a, (M2a)

0 = va
dea
dx

+
4kW
Da

(Ta − TW). (M2b)

By further assuming that the first term in (M2b) dominates the second one, we can
neglect the term 4kW /Da(Ta − TW) and simplify System (M2) to obtain the third
level as

0 =
pa(La)− pa(0)

La
+

λa
2Da

ρ|va|va + gρh′a,

0 = ea(La)− ea(0).

(M3)

2.1.2. Exact Solution of the Energy Equation. The equations (M1b) and (M2b) can
be solved analytically. This is done in the following lemma.

Lemma 1. The differential equation (M1b), i.e.,

0 = va
dea
dx
− λa

2Da
ρ|va|v2

a +
4kW
Da

(Ta − TW),

with initial condition
ea(0) = e0

a > 0

and state equation (7b) has the exact solution

ea(x) =

√
β2 − 4αγ

2α

1 + exp

(
x
√
β2−4αγ

ζ

)(
2αe0a+β−

√
β2−4αγ

2αe0a+β+
√
β2−4αγ

)

1− exp

(
x
√
β2−4αγ

ζ

)(
2αe0a+β−

√
β2−4αγ

2αe0a+β+
√
β2−4αγ

) − β

2α

with
α := − 4kW θ2

Da(e0)2
, β := −4kW θ1

Dae0
, ζ := va,

γ :=
λa

2Da
ρ|va|v2

a −
4kW
Da

(θ0 − TW),

(8)

if 4αγ − β2 < 0 is satisfied.

Proof. We combine (M1b) and (7b) to obtain

0 = va
dea
dx
− λa

2Da
ρa|va|v2

a +
4kW
Da

(θ2(e∗a)2 + θ1e
∗
a + θ0 − TW).

After re-organizing and replacing e∗a by its definition, the equation reads

− 4kW θ2

Da(e0)2
(ea)2 − 4kW θ1

Dae0
ea −

4kW
Da

(θ0 − TW) +
λa

2Da
ρa|va|v2

a = va
dea
dx

. (9)

We combine Equation (9) with the definitions in (8) and get

αe2
a + βea + γ = ζ

dea
dx

. (10)
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Equation (10) is a Riccati equation with constant coefficients; see, e.g., [18]. Because
α, β, γ, and ζ do not depend on x, they can be seen as constants when integrating
over x. We re-organize and integrate both sides over x, yielding

∫
1 dx =

∫
ζ dea

dx

α(ea)2 + βea + γ
dx. (11)

Applying a variable change in the right-hand side of (11) leads to
x

ζ
=

∫
1

α(ea)2 + βea + γ
dea. (12)

We may rewrite

α(ea)2 + βea + γ =

(
(ea)2 +

β

α
ea +

β2

4α2

)
+

4αγ − β2

4α

= α

((
ea +

β

2α

)2

+
4αγ − β2

4α2

)
,

since 4αγ − β2 < 0 holds by assumption. Therefore, we have

α

((
ea +

β

2α

)2

+
4αγ − β2

4α2

)
= α



(
ea +

β

2α

)2

−
(√

β2 − 4αγ

2α

)2

 .

Going back to (12) we have∫
1

α(ea)2 + βea + γ
dea

=

∫
1

α

((
ea + β

2α

)2

−
(√

β2−4αγ

2α

)2
) dea,

= C1

∫ √
β2−4αγ

α
(
ea + β

2α

)2

−
(√

β2−4αγ

2α

)2 dea,

= C1

∫ √β2−4αγ

2α +

√
β2−4αγ

2α + ea + β
2α − ea −

β
2α

(
ea + β

2α

)2

−
(√

β2−4αγ

2α

)2 dea,

= C1

∫ 

(
ea +

β

2α
−
√
β2 − 4αγ

2α

)−1

−
(
ea +

β

2α
+

√
β2 − 4αγ

2α

)−1

 dea,

= C1 ln

∣∣∣∣∣
2αea + β −

√
β2 − 4αγ

2αea + β +
√
β2 − 4αγ

∣∣∣∣∣+ C2,

where we set
C1 :=

1√
β2 − 4αγ

.

The internal energy equation thus reduces to

x

ζ
= C1 ln

∣∣∣∣∣
2αea(x) + β −

√
β2 − 4αγ

2aea(x) + β +
√
β2 − 4αγ

∣∣∣∣∣+ C2.
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By re-substituting the definition of C1 we may write
√
β2 − 4αγ

(
x

ζ
− C2

)
= ln

∣∣∣∣∣
2αea(x) + β −

√
β2 − 4αγ

2aea(x) + β +
√
β2 − 4αγ

∣∣∣∣∣ . (13)

We define C3 := exp
(
−C2

√
β2 − 4αγ

)
. Then, (13) leads to

C3 exp

(
x
√
β2 − 4αγ

ζ

)
=

∣∣∣∣∣
2αea(x) + β −

√
β2 − 4αγ

2aea(x) + β +
√
β2 − 4αγ

∣∣∣∣∣ .

The constant C3 then absorbs the ± sign such that we can write

C3 exp

(
x
√
β2 − 4αγ

ζ

)
=

(
2αea(x) + β −

√
β2 − 4αγ

2aea(x) + β +
√
β2 − 4αγ

)
. (14)

We compute C2 using the initial condition at x = 0 and obtain

C3 =

(
2αe0

a + β −
√
β2 − 4αγ

2ae0
a + β +

√
β2 − 4αγ

)
. (15)

Finally, we combine Equation (14) and (15), yielding

ea(x) =

√
β2 − 4αγ

2α

1 + exp

(
x
√
β2−4αγ

ζ

)(
2αe0a+β−

√
β2−4αγ

2αe0a+β+
√
β2−4αγ

)

1− exp

(
x
√
β2−4αγ

ζ

)(
2αe0a+β−

√
β2−4αγ

2αe0a+β+
√
β2−4αγ

) − β

2α
. �

Let us further note that the condition 4αγ − β2 < 0 of the last lemma is satisfied
for usual pipe parameters.

Corollary 1. The differential equation (M2b), i.e.,

0 = va
dea
dx

+
4kW
Da

(Ta − TW),

with initial condition
ea(0) = e0

a > 0

and state equation (7b) has the solution

ea(x) =

√
β2 − 4αγ

2α

1 + exp

(
x
√
β2−4αγ

ζ

)(
2αe0a+β−

√
β2−4αγ

2αe0a+β+
√
β2−4αγ

)

1− exp

(
x
√
β2−4αγ

ζ

)(
2αe0a+β−

√
β2−4αγ

2αe0a+β+
√
β2−4αγ

) − β

2α

with

α := − 4kW θ2

Da(e0)2
, β := −4kW θ1

Dae0
, γ := −4kW

Da
(θ0 − TW), ζ := va,

if 4αγ − β2 < 0 is satisfied.

The proof is analogous to the one of Lemma 1. Figure 1 shows the exact solution
of (M1b) for a specific pipe.

The exact solutions derived in the last lemma and corollary could, in principle,
be used as constraints in a nonlinear optimization model. However, the fractions,
square roots, and exponential functions would lead to a very badly posed problem
resulting in an extreme numerical challenge even for state-of-the-art solvers.
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va
0
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4
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8
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0.30
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0.50

e
a (L

a )
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0.2
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0.4

Figure 1. Solution of Equation (M1b) for positive velocities and
the parameters kW = 0.5 W m−2 K−1, λa = 0.017, Da = 0.107 m,
La = 1000 m, and TW = 278 K. The units of the internal energy
density ea and the velocity va are GJ m−3 and m s−1, respectively.

2.1.3. Discretization. In order to solve the optimization problem, we follow the first-
discretize-then-optimize approach and introduce an equidistant discretization Γa of
the spatial domain [0, La] using the discretization points xk ∈ Γa such that 0 = x0 <
x1 < · · · < xna = La with the step size ∆xa = xk+1 − xk for k = 0, 1, . . . , na − 1.
We use the implicit mid-point rule to discretize the separate levels of the catalog,
i.e., Systems (M1)–(M3), as well as the state equation (7b). Using the abbreviation
eka := ea(xk), we obtain the discretized system

0 =
pa(La)− pa(0)

La
+
λaρ

2Da
|va|va + gρh′a,

0 = va

(
eka − ek−1

a

∆x

)
− λaρ

2Da
|va|v2

a +
4kW
Da

(
Ta(eka, e

k−1
a )− TW

) (D1)

for all k = 1, . . . , na. Discretizing (M2) analogously leads to

0 =
pa(La)− pa(0)

La
+
λaρ

2Da
|va|va + gρh′a,

0 = va

(
eka − ek−1

a

∆x

)
+

4kW
Da

(
Ta(eka, e

k−1
a )− TW

) (D2)

for all k = 1, . . . , na. The discretized systems (D1) and (D2) are closed by the
discretized version of the state equation (7b), i.e., by

Ta(eka, e
k−1
a ) :=

θ2

4e2
0

(
eka + ek−1

a

)2
+

θ1

2e0

(
eka + ek−1

a

)
+ θ0 (16)

for all k = 1, . . . , na. For System (M3), we get

0 =
pa(La)− pa(0)

La
+
λaρ

2Da
|va|va + gρh′a,

0 = ea(La)− ea(0),

(D3)

i.e., a two-point discretization is always exact. The model catalog (both for the
original and the discretized version) is depicted in Figure 2.
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Model (M1)

(M2)

(M3)

Eq. of state (7b)

Exact Models

(D1)

(D2)

(D3)

(16)

Discretized Models

λa
2Da

ρav
2
a|va| ≈ 0

va
dea
dx
� 4kW

Da
(Ta − TW)

λa
2Da

ρav
2
a|va| ≈ 0

va
dea
dx
� 4kW

Da
(Ta − TW)

Figure 2. Model catalog for hot water flow in a pipe.

2.2. Nodes. In this section, we discuss the modeling of nodes in the district heating
network. To this end, we mainly follow the modeling approach presented in [12].
We model mass conservation via∑

a∈δin(u)

qa =
∑

a∈δout(u)

qa, u ∈ V, (17)

where δin(u) and δout(u) model the set of in- and outgoing arcs of node u, respectively.
We assume continuity of pressure at the nodes and obtain

pu = pa(0), u ∈ V, a ∈ δout(u),

pu = pa(La), u ∈ V, a ∈ δin(u),
(18)

where pu is the pressure at node u.
Finally, we have to model how the internal energy is mixed at the nodes of the

network. To describe this, we use the perfect mixing model
∑

a∈δin(u)

ea:uqa
ρa

=
∑

a∈δout(u)

ea:uqa
ρa

, (19a)

0 = βa(ea:u − eu), a ∈ δout(u), (19b)

0 = γa(ea:u − eu), a ∈ δin(u), (19c)

with
qa = βa − γa, βa ≥ 0, γa ≥ 0, βaγa = 0 (20)

for a ∈ δ(u) = δin(u) ∪ δout(u). Here and in what follows, we denote with ea:u the
internal energy in pipe a at its end node u. For more details and a derivation of
this model we refer to [7, 11, 12, 25].
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2.3. Depot and Consumers. Following [12, 23], for the depot ad = (u, v) we have
the constraints

pu = ps, (21a)

Pp =
qad

ρ
(pad:v − pad:u) , (21b)

Pw + Pg =
qad

ρ
(ead:v − ead:u) , (21c)

where ps is the so-called stagnation pressure that is used to make the overall pressure
profile in the network unique. Moreover, Pp is the power required for the pressure
increase realized at the depot, Pw is the power obtained by waste incineration and Pg

is the power obtained by burning natural gas. The latter two quantities are used in
the depot to increase the internal energy density or, equivalently, the temperature
of the water.

In order to model the consumers a = (u, v) ∈ Ac, we use the constraints

Pa =
qa
ρ

(ea:v − ea:u) , (22a)

ea:u ≥ effa , (22b)

ea:v = ebf, (22c)
pv ≤ pu. (22d)

The first constraint models how the required thermal energy Pa is obtained in
dependence on the mass flow qa at the consumer and the difference ea:v − ea:u of
the internal energy density. The internal energy density at inflow conditions (ea:u)
needs to be larger than the given threshold effa and, at outflow conditions, it is fixed
to the network-wide constant ebf. Finally, the fourth constraint states that the
pressure cannot be increased at the household of a consumer.

2.4. Bounds, Objective Function, and Model Summary. To complete the
model we need to incorporate some technical and physical bounds on the variables
of the model and to define a proper objective function. First, we have bounds on
the mass flow, i.e.,

q−a ≤ qa ≤ q+
a , a ∈ Aff ∪Abf ∪Ac, (23)

on the nodal pressures,
0 ≤ pu ≤ p+

u , u ∈ V, (24)
and on the nodal water temperatures, i.e.,

Tu ∈ [T−u , T
+
u ], u ∈ V. (25)

Lastly, we incorporate bounds on power consumption, i.e.,

Pp ∈ [0, P+
p ], Pw ∈ [0, P+

w ], Pg ∈ [0, P+
g ] (26)

for given upper bounds P+
p , P+

w , and P+
g .

Our goal is to minimize the overall costs required to satisfy the heat demand of
all the consumers. Thus, the objective function is given by

CpPp + CwPw + CgPg, (27)

where Cp, Cw, and Cg, respectively, correspond to the cost of pressure increase,
waste incineration, and burning gas.



AN ADAPTIVE OPTIMIZATION METHOD FOR DISTRICT HEATING NETWORKS 11

Taking this all together leads to the discretized and thus finite-dimensional
optimization problem

min objective: (27),
s.t. pipe flow and thermal modeling: (16) and (D1), (D2), or (D3),

mass conservation: (17),
pressure continuity: (18),
temperature mixing: (19), (20),
depot constraints: (21),
consumer constraints: (22),
bounds: (23)–(26).

(NLP)

This is a highly nonlinear and, depending on the chosen grids, large-scale opti-
mization problem. Moreover, it only possesses very few degrees of freedom since
almost all variables are determined by our physical modeling. Both aspects already
make the problem very challenging to solve. In addition, however, the model also
contains the complementarity constraints (20), which makes it an ODE-constrained
mathematical program with complementarity constraints (MPCC). Solving it for
real-world networks is very challenging, which is the motivation of the error-based
adaptive algorithm that we develop in the two following sections.

3. Error Measures

In this section, we introduce the error measures for the adaptive optimization
algorithm that is presented in Section 4. Our approach is based on the work of [14]
and adapted for the problem at hand. The algorithm developed here is designed
to iteratively solve the nonlinear program (NLP) until its solution y is deemed to
be feasible w.r.t. a prescribed tolerance. The algorithm iteratively switches the
model level and the step sizes of the discretization grids for each pipe according
to a switching strategy presented later on. Both the switching strategy and the
feasibility check utilize the error measures in this section.

For the (NLP), four error sources can be identified: errors as introduced by
the solver of the optimization problem, round-off errors, errors from switching
between Systems (D1)–(D3), and errors due to selecting different step sizes of the
discretization of the systems. In this work we will only consider the latter two error
sources, which we refer to as model (level) errors and discretization (level) errors,
respectively. For a discussion of the neglected solver and round-off errors we refer
to Remark 1 below. By investigating the Systems (D1)–(D3) one finds that the
only difference between them, and hence the resulting error source, is the energy
equation and its discretization. This is why we base the definition of the error in
each pipe a on its internal energy density ea.

In general, utilizing estimates of the error of a system allows for the assessment of
the quality of their solution if an exact solution is not available. Hence, this section
is used to introduce error estimates for the model and discretization error. However,
since we have the analytic solution of the energy equations of Systems (M1)–(M3)
at hand, we can compute exact errors for the model and discretization error. Having
the exact errors available allows us to compare them to the error estimates presented
in this work and, hence, determine their quality.

This section is structured as follows. We start by providing the required notation
in Section 3.1. Furthermore, the rules that are used to refine and coarsen the
grids in the discretization of Systems (D1)–(D3) are introduced. In Section 3.2,
we continue by deriving exact and estimated error measures. We then close this
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log2 ∆x
∆xi+2 ∆xi+1 ∆xi ∆xi−1 ∆xi−2

← refinement: ∆xi/2 coarsening: 2∆xi →

Figure 3. Step-size refinement strategy by halving or doubling
the current step size ∆xi

section by proving that the error estimates form upper bounds of the exact errors
in a first-order approximation.

Remark 1. Since we want to be able to employ different third-party optimization
software packages in our adaptive error control we do not incorporate the errors
introduced by the solvers for the optimization problem. However, if error estimates
and error control for these errors are available then these can be incorporated as
well. It has been observed in the application of adaptive methods for gas networks
[14, 28] that round-off errors typically do not contribute much to the global error.
For this reason, we also do not consider round-off errors in our adaptive procedure
for district heating networks.

3.1. Notation. We start this section by introducing the required quantities and
notation. In order to keep the notation lucid, we omit the usage of the subscript a as
much as possible in this section. In particular, we drop the subscript a for the model
level (`a → `), the grid size (∆xa → ∆x), and for the set of gridpoints (Γa → Γ ), if
not stated otherwise.

Let y denote the solution of the optimization problem (NLP). For all pipes a ∈ Ap
it contains the approximate solution e`a(xk; ∆x) for model level ` (of pipe model (D`))
and step size ∆x (of discretization grid Γ ) at every grid point xk ∈ Γ , k = 1, . . . , n.
In addition, for a given pipe a we denote the exact solution of model (M`), evaluated
at xk ∈ Γ as e`a(xk). Furthermore, for the approximate and exact solutions we
also utilize the notion of e`a(Γ ; ∆x) := (e`a(x1; ∆x), . . . , e`a(xn; ∆x))> and e`a(Γ ) :=
(e`a(x1), . . . , e`a(xn))>, respectively.

We continue by defining the grid refinement and coarsening rules. For a given
pipe a, consider a sequence of grids {Γi}, i = 0, 1, 2, . . ., with Γi := {xki}niki=1 and
∆xi = xki+1 − xki for ki = 1, . . . , ni. Moreover, we refer to Γ0 as the reference
or evaluation grid. It is defined by a given number of grid points n0 and the
corresponding step size ∆x0 := La/(n0 − 1). Given an arbitrary grid Γi, i =
0, 1, 2, . . ., we perform a grid refinement step by halving its step size ∆xi to get
∆xi+1 = ∆xi/2 of the refined grid Γi+1. Conversely, we perform a grid coarsening
step by doubling ∆xi of grid Γi to obtain the coarsened grid Γi−1 with step size
∆xi−1 = 2∆xi. Figure 3 depicts a visualization of the grid refinement and coarsening
rules. Performing grid refinement and coarsening this way ensures that for every
i = 1, 2, . . . it holds that Γ0 ⊂ Γi. Therefore, providing a fixed number of grid
points n0 enables us to use the reference grid Γ0 as a common evaluation grid for
every refinement and coarsening step.

3.2. Derivation of Error Measures. In the following, we introduce two error
measures: exact errors and error estimates. To this end, we consider a single pipe
a ∈ Ap. We start by defining the total exact error as

νa(y) := ‖e1
a(Γ0)− e`a(Γ0; ∆xi)‖∞, (28)

where we compare the approximate solution of Model (D`) with grid size ∆xi to
the exact solution of Model (M1). Second, we introduce the exact model error via

νma (y) := ‖e1
a(Γ0)− e`a(Γ0)‖∞ , (29)
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where we compare the solutions of models (M`) and (M1). Next, we define the exact
discretization error as

νda (y) := ‖e`a(Γ0)− e`a(Γ0; ∆xi)‖∞, (30)

for which we compare the solution of Model (D`) with grid size ∆xi to the exact
solution of Model (M`). We continue by introducing error estimates. The (total)
error estimate is defined as the sum of a model error estimate and a discretization
error estimate. That is,

ηa(y) := ηma (y) + ηda(y) (31)
with the model error estimate

ηma (y) := ‖e1
a(Γ0; ∆xi)− e`a(Γ0; ∆xi)‖∞ (32)

and the discretization error estimate

ηda(y) := ‖e`a(Γ0; ∆xi)− e`a(Γ0; ∆xi−1)‖∞. (33)

The model error estimate compares two solutions with the same discretization scheme
but different pipe models (D1) and (D`). On the other hand, the discretization error
estimate compares two solutions of the same model but with different discretization
schemes as given by the step sizes ∆xi and ∆xi−1.

By considering the definitions (28)–(33) one finds the relation

νa(y) = ‖e1
a(Γ0)− e`a(Γ0; ∆xi) + e`a(Γ0)− e`a(Γ0)‖∞

≤ ‖e1
a(Γ0)− e`a(Γ0)‖∞ + ‖e`a(Γ0)− e`a(Γ0; ∆xi)‖∞

= νma (y) + νda (y) ≤̇ ηma (y) + ηda(y) = ηa(y) (34)

for ∆xi → 0. In the following, we show that the relation (34) holds for ∆xi → 0.
In particular, we need to show that νda (y) ≤̇ ηda(y) and νma (y) ≤̇ ηma (y) hold, where
the relation f1(x) ≤̇ f2(x) states that a function f2 is a first-order upper bound
of the function f1 if and only if f1(x) ≤ f2(x) + φ(x) for x→ 0 and any function
φ ∈ o(‖f2‖∞)

We first proceed by showing that νda (y) ≤̇ ηda(y) holds for ∆xi → 0. Since we
utilize the implicit mid-point rule to get Systems (D1)–(D3) and the fact that its
discretization error is of convergence order 2 (see, e.g., [17]) we can write that

e`a(xk)− e`a(xk; ∆xi) = c`(xk)∆x2
i +O(∆x3

i ) , (35)

e`a(xk)− e`a(xk; ∆xi−1) = 4c`(xk)∆x2
i +O(∆x3

i ) , (36)

where we use ∆xi−1 = 2∆xi. Here, the function c`(x) that arises from the Taylor
series expansion of the local discretization error is independet of ∆xi; see, e.g., [27].
Computing the difference between (35) and (36) yields

e`a(xk; ∆xi)− e`a(xk; ∆xi−1) = 3c`(xk)∆x2
i +O(∆x3

i ), (37)

and, thus,

c`(xk)∆x2
i =

e`a(xk; ∆xi)− e`a(xk; ∆xi−1)

3
+O(∆x3

i ). (38)

By replacing c`(xk)∆x2
i in (35) with the result of (38), applying the ∞-norm over

Γ0 on both sides, and using the triangle inequality, we find

νda (y) = ‖e
`
a(xk; ∆xi)− e`a(xk; ∆xi−1)

3
+O(∆x3

i )‖∞ ≤
1

3
ηda(y) + ‖O(∆x3

i )‖∞.

Since ηda(y) ∈ O(∆x2
i ) holds as shown in (37), we get that νda (y) ≤̇ ηda(y) holds for

∆xi → 0.
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Finally, we show that νma (y) ≤̇ ηma (y). The ideas are rather similar. By applying
the ∞-norm over Γ0 and the triangle inequality to the difference between (35) with
(M1) and current model level ` ∈ {(M1), (M2), (M3)} we get

νma (y) = ‖e`a(xk; ∆xi)− e1
a(xk; ∆xi) + (c`(xk)− c1(xk))∆x2

i +O(∆x3
i )‖∞

≤ ηma (y) + ‖O(∆x2
i )‖∞.

Since ηma (y) ∈ O(1), we get that νma (y) ≤̇ ηma (y) holds for ∆xi → 0.

Remark 2 (Computing error estimates). Observing the definitions of the error
estimates (31)–(33) yields that not only the energy e`a(Γ0; ∆xi), as a part of the
solution y, is required to compute the estimates but also the values e1

a(Γ0; ∆xi)
and e`a(Γ0; ∆xi−1), which are not given in terms of the solution y. One could
compute these values by recomputing the (NLP) with appropriately modified pipe
levels and step sizes. However, this is computationally very costly. An alternative
approach is to explicitly solve the modified (w.r.t. appropriately modified model levels
and step sizes) energy equations of the Systems (D1)–(D3) by means of implicit
numerical integration. Fortunately, this is not required in this work since the energy
equations of the Systems (D1)–(D3) together with Equation (16) allow for solving
them algebraically for the energies eka, k = 0, 1, . . . , n in linear time.

In the following section we present the algorithm that adaptively switches the
previously introduced models and their discretizations by means of a switching
strategy.

4. Adaptive algorithm

In this section, we present and analyze the adaptive optimization algorithm. This
algorithm is based on the work in [14] and adapted for the district heating network
problem studied in this paper. The algorithm iteratively solves the (NLP) while
adaptively switching the pipe model levels and discretization step sizes to achieve
a locally optimal solution that is feasible w.r.t. to some prescribed tolerance. The
adaptive switching is implemented via marking and switching strategies, which are
based on the error measures presented in the previous section.

Given an a-priori error tolerance ε > 0, our method aims at computing a finite
sequence of solutions of the nonlinear problem (NLP) in order to achieve a solution y
with an estimated average error less or equal to ε. This motivates the following
definition.

Definition 1. Let ε > 0 be a given tolerance. The solution y of the (NLP) is called
ε-feasible if

η̄(y) :=
1

|Ap|
∑

a∈Ap

ηa(y) ≤ ε,

where η̄(y) is called the total average error estimate.

The remainder of this section is structured as follows. We first provide the
switching and marking strategies used by our algorithm in Section 4.1. Then, we
present the adaptive algorithm and prove its convergence in Section 4.2.

4.1. Switching and Marking Strategies. We now define switching strategies to
compute new pipe levels `newa and new step sizes ∆xnewa . Let ε > 0 be a tolerance
and τ ≥ 1 be a tuning parameter. First, we introduce the model level switching
rules. Consider the pipe sets

A>εp := {a ∈ Ap : ηma (y; `a)− ηma (y; `newa ) > ε} (39)

and
A<τεp := {a ∈ Ap : ηma (y; `newa )− ηma (y; `a) < τε} . (40)
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The set A>εp (A<τεp ) contains all the pipes for which the new model level `newa

decreases (increases) the model error estimate compared to the current model level
`a w.r.t. the error tolerance ε. In order to switch-up the model level (`newa < `a),
we apply the rule

`newa =

{
`a − 1, `a > 1 ∧ ηma (y; `a)− ηma (y; `a − 1) > ε,

1, otherwise.
(41)

Similarly, for down-switching of the model level (`newa > `a), we apply the rule

`newa = min {`a + 1, `max} (42)

with `max = 3 in our setting. According to the rules defined in Section 3.1, we apply
the following grid refinement and coarsening rule:

∆xnewa =

{
1/2 ∆xa, for a grid refinement,
2 ∆xa, for a grid coarsening.

(43)

Based on the switching strategies defined in (39)–(43) we can now present our mark-
ing strategies that decide for which pipes we switch up or down the model level and
for which pipes we refine or coarsen the step size. Let the sets R,U ⊆ Ap represent
all pipes marked for grid refinement and model level up-switching, respectively.
Furthermore, let the sets C,D ⊆ Ap represent all pipes marked for grid coarsening
and model level down-switching, respectively. To avoid unnecessary switching we
use threshold parameters ΘR, ΘU , ΘC , ΘD ∈ (0, 1). We determine R and U by
finding the minimum subset of pipes a ∈ Ap such that

ΘR
∑

a∈Ap

ηda(y) ≤
∑

a∈R
ηda(y) (44)

and

ΘU
∑

a∈A>εp

(
ηma (y; `a)− ηma (y; `newa )

)
≤
∑

a∈U

(
ηma (y; `a)− ηma (y; `newa )

)
(45)

are satisfied, where in (45), the rule in (41) is applied. Similarly, in order to
determine C and D, we have to find the maximum subset of all pipes a ∈ Ap such
that

ΘC
∑

a∈Ap

ηda(y) ≥
∑

a∈C
ηda(y) (46)

and

ΘD
∑

a∈A<τεp

(
ηma (y; `newa )− ηma (y; `a)

)
≥
∑

a∈D

(
ηma (y; `newa )− ηma (y; `a)

)
(47)

hold, where in (47), the rule in (42) is applied.

Remark 3. Note that Definition 1 is based on the total error estimate as introduced
in the previous section. Since the total exact error is upper bounded by the total
error estimate via (34) one also has that the solution y of the (NLP) is ε-feasible
w.r.t. the total average exact error ν̄(y), i.e., ν̄(y) ≤ ε holds with where

ν̄(y) :=
1

|Ap|
∑

a∈Ap

νa(y).

Thus, whenever error estimates are used for the switching and marking strategies,
the exact errors can be used as well.
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As used before in Section 3.2, the first-order approximation of the discretization
error estimator in x ∈ [0, La] of a discretization scheme of order β reads ηda(x)

.
=

c(x)∆xβa , where c(x) is independent of ∆xa. This allows us to write

ηd,newa (x) =

(
∆xnewa

∆xa

)β
ηda(x)

for the new discretization error estimator after a grid refinement or coarsening.
Since the implicit mid-point rule is used in our case, β = 2 holds, leading to

ηd,newa (x) =

{
ηda(x)/4, for a grid refinement,
4 ηda(x), for a grid coarsening.

(48)

This also naturally holds for the exact discretization error estimator νda (x).

4.2. Adaptive Algorithm. In this section we present the adaptive optimization
algorithm. The algorithm is formally given in Algorithm 1 and described in the
following.

The input of the algorithm comprise of a complete description of the network,
including initial and boundary conditions, the error tolerance ε > 0 as well as initial
values for the parameters Θ0

R, Θ
0
U , Θ

0
C , Θ

0
D ∈ (0, 1), τ0 ≤ 1, µ0 ∈ N+. The output of

the algorithm is an ε-feasible solution y of the nonlinear problem (NLP) according
to Definition 1.

The algorithm starts by initializing model levels and grid sizes for each pipe.
It then solves the (NLP) for the first time and checks for ε-feasibility. Since it is
likely that after the first iteration the feasibility check fails, the algorithm enters
two nested loops: the outer loop for down-switching and coarsening and the inner
loop for up-switching and refinement. In this description we will also refer to the
outer loop as the k-loop and to the inner loop as the j-loop.

Next, the inner loop is entered and the up-switching and refinement sets U and R
are determined. This step is followed by up-switching and refining of each pipe
accordingly. Each j-loop finishes by re-solving the (NLP) with the new configuration
w.r.t. pipe model levels and grid sizes and it checks for feasibility. The inner loop
continues until either a feasible solution y is found or a maximum number of inner
loop iterations µk is reached.

What follows in the outer loop is the computation of the coarsening and down-
switching sets C and D, respectively. This step is succeeded by updating the pipe
model levels and step sizes. Similar to the inner loop, the outer loop finishes by
re-solving the (NLP) and checking for feasibility.

We first show that the algorithm is finite if we only apply changes to the dis-
cretization step sizes while fixing the model levels for all pipes.

Lemma 2. Suppose that the model level `a ∈ {1, 2, 3} is fixed for every pipe
a ∈ Ap. Let the resulting set of model levels be denoted by M. Suppose further
that ηa(y) = ηda(y) holds in (31) and that every (NLP) is solved to local optimality.
Consider Algorithm 1 without applying the model switching steps in Lines 11 and 19.
Then, the algorithm terminates after a finite number of refinements in Line 13 and
coarsenings in Line 21 with an ε-feasible solution w.r.t. model level setM if there
exists a constant C > 0 such that

1

4
ΘkRµ

k ≥ ΘkC + C (49)

holds and if the step sizes of the initial discretizations are chosen sufficiently small.

Proof. We focus on the total discretization error defined as

ηd(yj) :=
∑

a∈Ap

ηda(yj)
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Algorithm 1: Adaptive Model and Discretization Level Control

Input: Network (V,A), initial and boundary conditions, error tolerance
ε > 0, initial parameters Θ0

R, Θ
0
U , Θ

0
C , Θ

0
D ∈ (0, 1), τ0 ≤ 1, µ0 ∈ N+

Output: ε-feasible solution y of (NLP)

1 foreach a ∈ Ap do
2 Initialize model level `0a and step size ∆x0

a

3 y0 ← Solve (NLP)
4 if y0 is ε-feasible then
5 return y ← y0

6 for k = 1, 2, . . . do
7 Update parameters ΘkR, Θ

k
U , Θ

k
C , Θ

k
D, µ

k, τk

8 for j = 1, . . . , µk do
9 Compute sets Uk,j ,Rk,j ⊆ Ap according to (44), (45)

10 foreach a ∈ Uk,j do
11 Switch-up the model level `k,ja according to (41)

12 foreach a ∈ Rk,j do
13 Refine step size ∆xk,ja according to (43)

14 yk,j ← Solve (NLP)
15 if yk,j is ε-feasible then
16 return y ← yk,j

17 Compute sets Dk, Ck ⊆ Ap according to (46), (47)
18 foreach a ∈ Dk do
19 Switch-down the model level `ka according to (42)

20 foreach a ∈ Ck do
21 Coarsen step size ∆xka according to (43)

22 yk ← Solve (NLP)

up
-s
w
it
ch
in
g

&
re
fin

em
en
t

do
w
n-
sw

it
ch
in
g

&
co
ar
se
ni
ng

23 if yk is ε-feasible then
24 return y ← yk

and show that this quantity is positively bounded away from zero for one outer-loop
iteration k containing µ inner refinement steps and one coarsening step. For the
sake of simplicity we drop the k index.

Hence, we first look at the influence of one inner refinement for-loop iteration
j ∈ {1, . . . , µ} on ηd(yj). Thus,

∑

a∈Ap

ηda(yj−1)−
∑

a∈Ap

ηda(yj)

=
∑

a∈Ap\Rj
ηda(yj−1) +

∑

a∈Rj
ηda(yj−1)−

∑

a∈Ap\Rj
ηda(yj)−

∑

a∈Rj
ηda(yj)

=
∑

a∈Rj
ηda(yj−1)−

∑

a∈Rj

1

4
ηda(yj−1)

=
3

4

∑

a∈Rj
ηda(yj−1),

(50)

where we use that ηda(yj) equals 1/4 of ηda(yj−1) if ∆xa is chosen small enough.
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Summing up Equation (50) over all j ∈ {1, . . . , µ} gives the total error decrease
in the inner for-loop:

µ∑

j=1


∑

a∈Ap

ηda(yj−1)−
∑

a∈Ap

ηda(yj)




=
∑

a∈Ap

ηda(y0)−
∑

a∈Ap

ηda(yµ)

=
3

4

µ∑

j=1

∑

a∈Rj
ηda(yj−1).

We now focus on the final coarsening step of the outer for-loop. For the sake of
simplicity we say that yµ+1 corresponds to the solution of the (NLP) after the
coarsening step. Thus,

∑

a∈Ap

ηda(yµ+1)−
∑

a∈Ap

ηda(yµ)

=
∑

a∈Ap\C
ηda(yµ+1) +

∑

a∈C
ηda(yµ+1)−

∑

a∈Ap\C
ηda(yµ)−

∑

a∈C
ηda(yµ)

= 4
∑

a∈C
ηda(yµ)−

∑

a∈C
ηda(yµ)

= 3
∑

a∈C
ηda(yµ)

holds, where we again use that ηda(yµ+1) equals 4ηda(yµ) if ∆xa is chosen small
enough.

We now prove that the total error decrease in each iteration of the outer for
loop of Algorithm 1 is positive and uniformly bounded away from zero. Hence, we
consider

∑

a∈Ap

ηda(y0)−
∑

a∈Ap

ηda(yµ+1) =
3

4

µ∑

j=1

∑

a∈Rj
ηda(yj−1)− 3

∑

a∈C
ηda(yµ).

Then, using
ηda(yj) ≥ ηda(yµ) for all j = 1, . . . , µ,

(44), (49), and (46), we obtain

3

4

µ∑

j=1

∑

a∈Rj
ηda(yj−1) ≥ 3

4
ΘR

µ∑

j=1

∑

a∈Ap

ηda(yj−1) ≥ 3

4
ΘR

µ∑

j=1

∑

a∈Ap

ηda(yµ)

=
3

4
ΘRµ

∑

a∈Ap

ηda(yµ) ≥ 3(ΘC + C)
∑

a∈Ap

ηda(yµ) ≥ 3ΘC
∑

a∈Ap

ηda(yµ) + C|Ap|ε

≥ 3
∑

a∈C
ηda(yµ) + C|Ap|ε,

which completes the proof. �
Next, we show that the algorithm is finite if we only apply model level changes

while the discretization step sizes are kept fixed.

Lemma 3. Suppose that the discretization stepsize ∆xa is fixed for every pipe
a ∈ Ap. Suppose further that ηa(y) = ηma (y) holds in (31) and that every (NLP) is
solved to local optimality. Consider Algorithm 1 without applying the discretization
refinements in Line 13 and the coarsening step in Line 21. Then, the algorithm
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terminates after a finite number of model switches in Lines 11 and 19 with an ε-
feasible solution with respect to the step sizes ∆xa, a ∈ Ap, if there exists a constant
C > 0 such that

ΘkUµ
k ≥ τkΘkD|Ap|+ C. (51)

The proof of this lemma is the same as in [14], which is why we omit it here.

Lemma 4. Let yµ and yµ+1 be the solution of the optimization problem before
and after a refinement or coarsening step, respectively. Let ηda(y) and ηma (y) be the
discretization and model error estimator for a given solution y of (NLP) as defined
in (33) and (32). Then, if

ηda(yµ)� ηma (yµ)

is satisfied, it holds that
ηma (yµ+1) = ηma (yµ). (52)

Proof. For x ∈ Γ0 we introduce ηda(x; `a,∆xi) and ηma (x; `a,∆xi) as the local
discretization error estimator and the local model error estimator evaluated at x
using the model level `a and the step size ∆xi such that

ηda(x; `a,∆xi) := e`aa (x; ∆xi)− e`aa (x; ∆xi−1),

ηma (x; `a,∆xi) := e1
a(x; ∆xi)− e`aa (x; ∆xi)

holds. Since ηda(x; `a,∆xi) uses the same step sizes ∆xi and ∆xi−1 for all `a, we
have

|ηda(x; `a,∆xi)| � |ηma (x; `a,∆xi)| ⇐⇒ |ηda(x; 1,∆xi)| � |ηma (x; `a,∆xi)|. (53)

We now focus on the coarsening step and prove Equation (52). The proof for the
refinement step is analogous to the coarsening step and is therefore not presented.
By definition and due to the coarsening step, we have

ηma (yµ+1) = max
x∈Γ0

|e1
a(x; ∆xi−1)− e`aa (x; ∆xi−1)|

= max
x∈Γ0

|e1
a(x; ∆xi−1)− e`aa (x; ∆xi−1) + e1

a(x; ∆xi)

− e1
a(x; ∆xi) + e`aa (x; ∆xi)− e`aa (x; ∆xi)|

= max
x∈Γ0

|ηma (x; `a,∆xi)− ηda(x; 1,∆xi) + ηda(x; `a,∆xi)|.

Using (53), we finally obtain

ηma (yµ+1) = max
x∈Γ0

|ηma (x; `a,∆xi)| =: ηma (yµ). �

We also have a corresponding result for the estimators of the discretization error.
For this result, we make the following assumption.

Assumption 1. Let yµ and yµ+1 be the solution of the optimization problem before
and after a model up- or down-switching step, respectively. Moreover, let us denote
with λµ and λµ+1 the corresponding sensitivities. Then, there exists a constant
C > 0 with ‖λµ − λµ+1‖ ≤ C.

Before we now state the next lemma, we briefly discuss this assumption. Infor-
mally speaking, it states that the difference of the sensitivities (i.e., of the dual
variables) of the optimization problems before and after a model up- or down-
switching step is bounded by a constant. We are convinced that this assumption
holds for the different models in our catalog.
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Lemma 5. Let yµ and yµ+1 respectively be the solution of the optimization problem
before and after a model up or down switching step. Let ηda(y) and ηma (y) be the
discretization and model error estimator for a given solution y of (NLP) as defined
in (33) and (32). Finally, suppose that Assumption 1 holds. Then,

ηda(yµ+1) = ηda(yµ) (54)

holds.

Proof. As long as Assumption 1 holds, the error estimate for the discretization error
is independent of the used model and we immediately get the desired result. �

We are now ready to prove our main theorem on the finiteness of the proposed
algorithm.

Theorem 1 (Finite termination). Suppose that ηda � ηma for every a ∈ Ap and that
every (NLP) is solved to local optimality. Moreover, suppose that Assumption 1 holds.
Then, Algorithm 1 terminates after a finite number of refinements, coarsenings, and
model switches in Lines 11, 13, 19, and 21 with an ε-feasible solution w.r.t. the
reference problem if there exist constants C1, C2 > 0 such that

1

4
ΘkRµ

k ≥ ΘkC + C1 and ΘkUµ
k ≥ τkΘkD|Ap|+ C2

hold for all k.

Proof. We first focus on the average total error estimator decrease between two
subsequent inner loop iterations of Algorithm 1. Hence,

η̄(yj−1)− η̄(yj) =
∑

a∈Ap

ηa(yj−1)−
∑

a∈Ap

ηa(yj)

=
∑

a∈Ap

ηma (yj−1) +
∑

a∈Ap

ηda(yj−1)−
∑

a∈Ap

ηma (yj)−
∑

a∈Ap

ηda(yj)

=
∑

a∈Ap\(Rj∪Uj)
ηma (yj−1) +

∑

a∈Uj
ηma (yj−1) +

∑

a∈Rj\Uj
ηma (yj−1)

−
∑

a∈Ap\(Rj∪Uj)
ηma (yj)−

∑

a∈Uj
ηma (yj)−

∑

a∈Rj\Uj
ηma (yj)

+
∑

a∈Ap\(Rj∪Uj)
ηda(yj−1) +

∑

a∈Rj
ηda(yj−1) +

∑

a∈Uj\Rj
ηda(yj−1)

−
∑

a∈Ap\(Rj∪Uj)
ηda(yj)−

∑

a∈Rj
ηda(yj)−

∑

a∈Uj\Rj
ηda(yj)

=
∑

a∈Uj
ηma (yj−1)−

∑

a∈Uj
ηma (yj) +

∑

a∈Rj
ηda(yj−1)−

∑

a∈Rj
ηda(yj)

=
∑

a∈Uj
ηma (yj−1)−

∑

a∈Uj
ηma (yj) +

∑

a∈Rj

3

4
ηda(yj−1)

holds, where we use Lemma 4, Lemma 5, and Equation (48). Taking the sum over
all j = 1, . . . , µ inner loop iterations gives

µ∑

j=1

η̄(yj−1)− η̄(yj)

= η̄(y0)− η̄(yµ)

=

µ∑

j=1


∑

a∈Uj
ηma (yj−1)−

∑

a∈Uj
ηma (yj) +

∑

a∈Rj

3

4
ηda(yj−1)


 .
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Next, we focus on the outer loop iterations of Algorithm 1. We evaluate the
average total error increase due to the coarsening and down-switching. Hence,

η̄(yµ+1)− η̄(yµ) =
∑

a∈Ap

ηma (yµ+1) +
∑

a∈Ap

ηda(yµ+1)−
∑

a∈Ap

ηma (yµ)−
∑

a∈Ap

ηda(yµ)

=
∑

a∈Ap\(C∪D)

ηma (yµ+1) +
∑

a∈D
ηma (yµ+1) +

∑

a∈C\D
ηma (yµ+1)

−
∑

a∈Ap\(C∪D)

ηma (yµ)−
∑

a∈D
ηma (yµ)−

∑

a∈C\D
ηma (yµ)

+
∑

a∈Ap\(C∪D)

ηda(yµ+1) +
∑

a∈C
ηda(yµ+1) +

∑

a∈D\C
ηda(yµ+1)

−
∑

a∈Ap\(C∪D)

ηda(yµ)−
∑

a∈C
ηda(yµ)−

∑

a∈D\C
ηda(yµ)

=
∑

a∈D
ηma (yµ+1)−

∑

a∈D
ηma (yµ) +

∑

a∈C
ηda(yµ+1)−

∑

a∈C
ηda(yµ)

=
∑

a∈D
ηma (yµ+1)−

∑

a∈D
ηma (yµ) + 3

∑

a∈C
ηda(yµ),

where we use Lemma 4, Lemma 5, and Equation (48).
It suffices to prove that the inner loop average total error decrease is always

greater than the outer loop average total error increase, i.e.,
µ∑

j=1


∑

a∈Uj
ηma (yj−1)−

∑

a∈Uj
ηma (yj) +

∑

a∈Rj

3

4
ηda(yj−1)




>
∑

a∈D
ηma (yµ+1)−

∑

a∈D
ηma (yµ) + 3

∑

a∈C
ηda(yµ).

Using the proofs of Lemma 2 and 3, we obtain
µ∑

j=1


∑

a∈Uj
ηma (yj−1)−

∑

a∈Uj
ηma (yj) +

∑

a∈Rj

3

4
ηda(yj−1)




≥ ΘUµε+
3

4
ΘRµ

∑

a∈Ap

ηda(yµ)

≥ (τΘD|Ap|+ C2)ε+ 3(ΘC + C1)
∑

a∈Ap

ηda(yµ)

≥
∑

a∈D
(ηma (yµ+1)− ηma (yµ)) + C2ε+ 3

∑

a∈C
ηda(yµ) + C1|Ap|ε.

This concludes the proof. �

5. Numerical Results

In this section we present numerical results and for this we first discuss the
software and hardware setup. Then, the considered instances are presented and,
afterward, the parameterization of the adaptive algorithm is explained.

5.1. Software and Hardware Setup. We implemented the models in Python 3.7.4
using the Pyomo 6.2 package [8, 9] and solve the resulting NLPs using the NLP
solver CONOPT4 4.24 [6], which is interfaced via the Pyomo-GAMS interface. We
also tested other solvers and concluded that CONOPT4 is the most reliable solver
that performs best for our application. We used the default GAMS settings. The
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Table 1. Characteristics of the test networks.

Network # pipes # depots # consumers total pipe length (m)

AROMA 18 1 5 7262.4
STREET 162 1 32 7627.1

Table 2. Parameters used for the numerical results.

Parameter Value

ε 10−6 GJ m−3

ΘR 0.9
ΘU 0.4
ΘC 0.45
ΘD 0.2
τ 5
µ 4

computations were executed on a computer with an Intel(R) Core(TM) i7-8550U
processor with eight threads at 1.90 GHz and 16 GB RAM.

5.2. Test Instances. The two networks considered in this section are the so-called
AROMA and STREET networks; see also [12] where they have been used as well.
AROMA is an academic test network, whereas STREET is a part of an existing
real-world district heating network. Both networks contain cycles but the much
larger STREET network only contains a single cycle so that the overall network is
almost tree-shaped. Table 1 shows the main characteristics of these networks.

The cost of waste incineration, of natural gas, and of increasing the pressure
of the water in the depot are taken from [15] and are set to Cw = 0e/kWh,
Cg = 0.0415e/kWh, and Cp = 0.165e/kWh. Additionally, the gas and pressure
power variables Pg and Pp are left unbounded above, whereas the waste power
variable Pw is bounded above by 10 kW. Scarce waste incineration power Pw implies
an increased consumption of costly power (Pp and Pg) to satisfy the total customer
demand and thus yields a non-trivial optimization problem.

5.3. Parameterization of the Algorithm. Table 2 shows the parameters used
for obtaining the numerical results. These parameters are kept constant over the
course of the iterations of the algorithm to simplify the interpretation of the results.
It should be noted that the parameters do not satisfy the second inequality in
Theorem 1. We choose this parameterization despite this fact because the algorithm
still converges using these settings and allows for switching down the model level of
more pipes and, hence, keeps the optimization model more tractable over the course
of the iterations. One could, e.g., by increasing µ, easily satisfy both inequalities of
Theorem 1. For the first iteration of the adaptive algorithm we use ∆xa = La/2
and `a = 3 for all a ∈ Ap. This forces us to take the reference grid Γ0 = {0, La}
for all a ∈ Ap. The assumption that the initial granularity of the discretization
is sufficiently fine is not satisfied here but does (in practice) not harm the overall
convergence of the algorithm and is therefore kept large.

5.4. Discussion of the Results Obtained by Using Error Estimators. Let
us first note that none of the tested optimization solvers converges to a feasible point
for both the AROMA and the STREET network when using (M1) and ∆xa = La/10
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Figure 4. Error estimator values (top) and computation times
(bottom) over the course of the iterations of the adaptive algorithm
using error estimators; AROMA network (left) and STREET network
(right).

for all a ∈ Ap since this spatial discretization already leads to a highly nonlinear
problem of a size that is very hard to be tackled by state-of-the-art NLP solvers.

The two upper plots in Figure 4 show a steady decrease of the values of the
error estimators over the course of the iterations of the adaptive algorithm. Small
increases in the error can be observed every five iterations of the algorithm. These
arise from the increase of the model level and the coarsening of the discretizations
(outer loop) that is carried out after four refinement steps in which we increase the
model’s accuracy (inner loop). The error plots thus confirm that the algorithm
steadily decreases the total error over the course of one outer loop iteration.

The results show that the algorithm works as expected and that it terminates
after a finite number of iterations with a locally optimal solution of a model that
has a physical accuracy for which state-of-the-art solvers are not able to compute a
solution from scratch. This is one of the most important contributions of this paper:
We can solve realistic instances that have not been solvable before. Additionally,
the two lower plots in Figure 4 show the computation times for the separate models
of Type (NLP) that we solve in every iteration. Although we warmstart every new
problem with the solution of the previous one, we observe an increase of solution
times due to the higher complexity of the successive models that we solve.

Next, Figure 5 shows the proportion of pipes inside the sets U , R, D, and C before
solving (NLP) for every iteration of the algorithm. The discretization sets represent
a larger proportion of pipes when compared to the sets for switching between the
model levels. This originates from the parameter selection that favors changes of
the discretization and is explained by the fact that the model level of a specific pipe
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Figure 5. Proportion of pipes inside sets U ,R,D, and C over
the course of iterations of the adaptive algorithm using the error
estimators; AROMA (left) and STREET (right).
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Figure 6. Proportion of pipes inside each model level set (left) and
violin plots of the quantity of grid points (right) over the iterations
of our adaptive algorithm using the error estimators applied on the
STREET network.

can only be increased twice—unlike the discretization step size that may need to be
halved more often. The right plot of Figure 6 shows violin plots for the amount of
grid points in the pipes over the iterations of the algorithm applied to the STREET
network. The plot confirms the idea behind the parameter selection. Besides this,
Figure 5 illustrates that the down-switching set D stays empty until the last outer
loop iteration for both networks. This is a result of the set A<τεp being empty for
the first outer-loop iterations of the algorithm, which forces D to be empty. The
amount of pipes in each model level is shown in the left plot of Figure 6. Roughly
90 % of all pipes end up in the most accurate model level whereas the remaining
stay in the intermediate level.

Overall, we see that the behavior of the algorithm is comparable when applied to
the two different networks, which indicates that the algorithm is robust.

5.5. Discussion of the Results Obtained by Using Exact Errors. We now
compare the impact of using the error estimators defined in (31)–(33) when employing
the exact errors as defined in (28)–(30). To this end, we only consider the larger
STREET network. Figure 7 shows the previously discussed plots using exact errors.
Both approaches need 19 iterations to reach the desired tolerance. However, when
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Figure 7. Exact error values (top-left), computation time (top-
right), proportion of pipes inside each model level set (bottom-left),
and violin plots of the quantity of grid points (bottom-right) over
the course of the iterations of the adaptive algorithm using the
exact errors applied on the STREET network.

looking at the distribution of model levels, we see that in the case of using error
estimators, a much higher proportion of pipes are modeled using the most accurate
model (M1), which is not the case for any pipe in the exact error case; see the
bottom-left plot in Figure 7. Thus, it seems that the error estimators overestimate
the importance of switching to the most accurate model level. Consequently, using
the error estimators instead of the exact errors introduces a larger amount of
nonlinearities to the models that are solved in each iteration. This is an interesting
aspect and shows that it might be beneficial to use exact errors if they are available
like for the ODEs that we consider in this paper. Nevertheless, the computation
times show very similar behavior for both approaches, which makes clear that using
error estimators (especially in cases in which exact error formulas are not available)
also leads to an effective method.

5.6. Is Physical Accuracy Worth the Effort? Let us close this section with a
brief analysis of whether the physical accuracy guaranteed by our adaptive method
is worth the computational effort. The answer is a clear “Yes”. To illustrate this,
Figure 8 shows the values of some forward flow variables (pressures, temperatures,
and mass flows) that are part of the (NLP) of the AROMA network solved in the first
iteration as well as in the last iteration of the adaptive algorithm. The parameter
setup used in this test case is the same as presented in Section 5.2. Note that the
solution of the first iteration (top figure) corresponds to a rather coarse physical
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Figure 8. Forward flow solution of the AROMA network using the
error estimators after the first (top figure) and last (bottom figure)
iteration of the adaptive algorithm. Temperatures in K, pressures
in bar, and mass flows in kg s−1.

modeling whereas the solution of the last iteration (bottom figure) satisfies the
prescribed tolerance and is very accurate.

The difference of the solution values are obvious. The first solution has no
temperature losses at all (see (M3)) and all temperature values are at the upper
bound. Moreover, the mass flow values are comparably small. This changes
completely in the final solution. The temperatures have decreased around 50 K and
mass flows have increased by up to a factor of 3. The pressures have also changed
by around 10 %. It is clearly visible that the physical solution and the control of
the network changes significantly if the physical accuracy is increased. Thus, there
is a strong need for computing highly accurate solutions if the resulting controls
shall be practically useful.

6. Conclusion

In this paper, we set up a catalog of models for the hot water flow in pipes of
district heating networks. For all entries of this catalog, we also derived suitable
discretizations to obtain finite-dimensional optimization problems for the energy-
efficient control of these networks that still ensures that the demand of all customers
are satisfied. Based on these different models, we designed an iterative and adaptive
optimization method that automatically adapts the model level in the catalog as
well as the granularity of the discretization to finally obtain a local optimal control
that is feasible w.r.t. a user-specified tolerance. We show finite termination of this
algorithm and present very convincing numerical results that particularly show
that we can now solve realistic instances that are not solvable with state-of-the-art
commercial NLP solvers.
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For our future work, we plan to extend our modeling and solution approach to
the case of instationary hot water flow modeling. While we are confident that the
overall ideas can be carried over to this PDE-setting, this will most likely require
some more technical derivations compared to the ODE-case considered in this paper.

Acknowledgments

We acknowledge the support by the German Bundesministerium für Bildung
und Forschung within the project “EiFer”. Moreover, we are very grateful to all
the colleagues within the EiFer consortium for many fruitful discussions on the
topics of this paper and for providing the data. We also thank the Deutsche
Forschungsgemeinschaft for their support within projects A05, B03, B08, and Z01 in
the Sonderforschungsbereich/Transregio 154 “Mathematical Modelling, Simulation
and Optimization using the Example of Gas Networks”.

References

[1] A. Benonysson, B. Bøhm, and H. F. Ravn. “Operational optimization in a
district heating system.” In: Energy Conversion and Management 36.5 (1995),
pp. 297–314. doi: 10.1016/0196-8904(95)98895-T.

[2] C. Bordin, A. Gordini, and D. Vigo. “An optimization approach for district
heating strategic network design.” In: European Journal of Operational Re-
search 252.1 (2016), pp. 296–307. doi: 10.1016/j.ejor.2015.12.049.

[3] R. Borsche, M. Eimer, and N. Siedow. A local time stepping method for district
heating networks. 2018. url: https://kluedo.ub.uni-kl.de/frontdoor/
deliver/index/docId/5140/file/district_heating.pdf.

[4] F. Colella, A. Sciacovelli, and V. Verda. “Numerical analysis of a medium
scale latent energy storage unit for district heating systems.” In: Energy 45.1
(2012). The 24th International Conference on Efficiency, Cost, Optimization,
Simulation and Environmental Impact of Energy, ECOS 2011, pp. 397–406.
doi: 10.1016/j.energy.2012.03.043.

[5] J. Dorfner and T. Hamacher. “Large-Scale District Heating Network Opti-
mization.” In: IEEE Transactions on Smart Grid 5.4 (2014), pp. 1884–1891.
doi: 10.1109/TSG.2013.2295856.

[6] A. S. Drud. “CONOPT—a large-scale GRG code.” In: ORSA Journal on
computing 6.2 (1994), pp. 207–216.

[7] F. M. Hante and M. Schmidt. “Complementarity-based nonlinear program-
ming techniques for optimal mixing in gas networks.” In: EURO Journal on
Computational Optimization 7.3 (2019), pp. 299–323. doi: 10.1007/s13675-
019-00112-w.

[8] W. E. Hart, J.-P. Watson, and D. L. Woodruff. “Pyomo: modeling and solving
mathematical programs in Python.” In: Mathematical Programming Computa-
tion 3.3 (2011), pp. 219–260. doi: 10.1007/s12532-011-0026-8.

[9] W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil,
B. L. Nicholson, and J. D. Siirola. Pyomo-optimization modeling in Python.
Springer, 2017. doi: 10.1007/978-1-4614-3226-5.

[10] I. B. Hassine and U. Eicker. “Impact of load structure variation and solar
thermal energy integration on an existing district heating network.” In: Applied
Thermal Engineering 50.2 (2013). Combined Special Issues: ECP 2011 and
IMPRES 2010, pp. 1437–1446. doi: 10.1016/j.applthermaleng.2011.12.
037.



28 REFERENCES

[11] S.-A. Hauschild, N. Marheineke, V. Mehrmann, J. Mohring, A. M. Badlyan,
M. Rein, and M. Schmidt. “Port-Hamiltonian modeling of district heating
networks.” In: Progress in Differential Algebraic Equations II. Ed. by T. Reis,
S. Grundel, and S. Schöps. Differential-Albergaic Equations Forum. Springer,
2020. doi: 10.1007/978-3-030-53905-4_11.

[12] R. Krug, V. Mehrmann, and M. Schmidt. “Nonlinear Optimization of District
Heating Networks.” In: Optimization and Engineering 22.2 (2021), pp. 783–819.
doi: 10.1007/s11081-020-09549-0.

[13] V. Mehrmann and R. Morandin. “Structure-preserving discretization for port-
Hamiltonian descriptor systems.” In: 58th IEEE Conference on Decision and
Control (CDC), 9.-12.12.19, Nice. IEEE, 2019, pp. 6863–6868.

[14] V. Mehrmann, M. Schmidt, and J. J. Stolwijk. “Model and Discretization
Error Adaptivity Within Stationary Gas Transport Optimization.” In: Vietnam
Journal of Mathematics 46.4 (2018), pp. 779–801. doi: 10.1007/s10013-018-
0303-1.

[15] T. Nussbaumer and S. Thalmann. “Influence of system design on heat dis-
tribution costs in district heating.” In: Energy 101 (2016), pp. 496–505. doi:
10.1016/j.energy.2016.02.062.

[16] M. Pirouti, A. Bagdanavicius, J. Ekanayake, J. Wu, and N. Jenkins. “Energy
consumption and economic analyses of a district heating network.” In: Energy
57 (2013), pp. 149–159. doi: 10.1016/j.energy.2013.01.065.

[17] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Vol. 37.
Springer Science & Business Media, 2010.

[18] W. T. Reid. Riccati Differential Equations. Vol. 86. Mathematics in Science
and Engineering. Elsevier, 1972. doi: 10.1016/S0076-5392(08)61166-2.

[19] M. Rein, J. Mohring, T. Damm, and A. Klar. Model order reduction of
hyperbolic systems at the example of district heating networks. Tech. rep. 2019.
url: https://arxiv.org/abs/1903.03342.

[20] M. Rein, J. Mohring, T. Damm, and A. Klar. Optimal control of district
heating networks using a reduced order model. Tech. rep. 2019. url: http:
//publica.fraunhofer.de/documents/N-596673.html.

[21] M. Rein, J. Mohring, T. Damm, and A. Klar. “Parametric model order
reduction for district heating networks.” In: PAMM 18.1 (2018). doi: 10.
1002/pamm.201800192.

[22] B. Rezaie and M. A. Rosen. “District heating and cooling: Review of technology
and potential enhancements.” In: Applied Energy 93 (2012), pp. 2–10. doi:
10.1016/j.apenergy.2011.04.020.

[23] M. Roland and M. Schmidt. “Mixed-Integer Nonlinear Optimization for District
Heating Network Expansion.” In: at - Automatisierungstechnik (2020). Special
Issue "Mathematical Innovations fostering the Energy Transition – Control,
Optimization and Uncertainty Quantification". doi: 10.1515/auto-2020-
0063. Forthcoming.

[24] G. Sandou, S. Font, S. Tebbani, A. Hiret, C. Mondon, S. Tebbani, A. Hiret,
and C. Mondon. “Predictive Control of a Complex District Heating Network.”
In: Proceedings of the 44th IEEE Conference on Decision and Control. 2005,
pp. 7372–7377. doi: 10.1109/CDC.2005.1583351.

[25] M. Schmidt, M. C. Steinbach, and B. M. Willert. “High detail stationary
optimization models for gas networks: validation and results.” In: Optimization
and Engineering 17.2 (2016), pp. 437–472. doi: 10.1007/s11081-015-9300-3.



REFERENCES 29

[26] G. Schweiger, P.-O. Larsson, F. Magnusson, P. Lauenburg, and S. Velut.
“District heating and cooling systems – Framework for Modelica-based simu-
lation and dynamic optimization.” In: Energy 137 (2017), pp. 566–578. doi:
10.1016/j.energy.2017.05.115.

[27] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. 3rd ed. Springer,
New York, NY, 2002. doi: 10.1007/978-0-387-21738-3.

[28] J. Stolwijk and V. Mehrmann. “Error Analysis and Model Adaptivity for Flows
in Gas Networks.” In: Analele Stiintifice ale Universitatii Ovidius Constanta,
Seria Matematica 26 (July 2018), pp. 231–266. doi: 10.2478/auom-2018-
0027.

[29] V. Verda and F. Colella. “Primary energy savings through thermal storage
in district heating networks.” In: Energy 36.7 (2011), pp. 4278–4286. doi:
10.1016/j.energy.2011.04.015.

[30] F. Verrilli, S. Srinivasan, G. Gambino, M. Canelli, M. Himanka, C. Del Vecchio,
M. Sasso, and L. Glielmo. “Model Predictive Control-Based Optimal Opera-
tions of District Heating System With Thermal Energy Storage and Flexible
Loads.” In: IEEE Transactions on Automation Science and Engineering 14.2
(2017), pp. 547–557. doi: 10.1109/TASE.2016.2618948.

(H. Dänschel, V. Mehrmann) TU Berlin, Inst. f. Mathematik, MA 4-5, Str. des 17.
Juni 135, 10623 Berlin, Germany

Email address: daenschel@math.tu-berlin.de
Email address: mehrmann@math.tu-berlin.de

(M. Roland, M. Schmidt) Trier University, Department of Mathematics, Universität-
sring 15, 54296 Trier, Germany

Email address: roland@uni-trier.de
Email address: martin.schmidt@uni-trier.de



Article 3
Exact and Heuristic Solution Techniques for
Mixed-Integer Quantile Minimization Problems

Diego Cattaruzza, Martine Labbé, Matteo Petris, Marius Roland, Martin
Schmidt
Submitted preprint (2022), URL: https://optimization-online.org/2021/11/
8673/

129

https://optimization-online.org/2021/11/8673/
https://optimization-online.org/2021/11/8673/


Exact and Heuristic Solution Techniques
for Mixed-Integer Quantile Minimization Problems
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Martin Schmidt

Abstract. We consider mixed-integer linear quantile minimization problems
that yield large-scale problems that are very hard to solve for real-world
instances. We motivate the study of this problem class by two important real-
world problems: a maintenance planning problem for electricity networks and a
quantile-based variant of the classic portfolio optimization problem. For these
problems, we develop valid inequalities and present an overlapping alternating
direction method. Moreover, we discuss an adaptive scenario clustering method
for which we prove that it terminates after a finite number of iterations with a
global optimal solution. We study the computational impact of all presented
techniques and finally show that their combination leads to an overall method
that can solve the maintenance planning problem on large-scale real-world
instances provided by the EURO/ROADEF challenge 20201and that they also
lead to significant improvements when solving a quantile-version of the classic
portfolio optimization problem.

1. Introduction

Many real-world planning and investment problems face a significant amount
of uncertainty since they inevitably need to incorporate aspects that lie in the
future and are thus unknown at the time of decision making. Consequently, usual
objective functions in this context combine the minimization of expected costs (or
the maximization of expected profits) with some kind of risk minimization. In this
paper, we consider general planning and investment problems in which we minimize
a convex combination of expected costs and the risk’s quantile. In other words, the
objective function is a combination of the expected value and the Value at Risk
(VaR) of some function that is linear in the problem’s variables. It is well known
that VaR is nothing but the τ -quantile. It is a measure of risk used in various
domains. In portfolio optimization, [8, 9] consider the problem of maximizing the
VaR subject to a lower bound on the expected return while [1, 2, 4, 16] maximize
the expected return given a lower bound on the VaR.

Limiting the VaR of a random variable is a particular type of chance constraint
since it is equivalent to setting up a lower bound on the probability that the
random variable takes a value larger than the said limit. Chance-constrained
formulations have been proposed for various applications such as the design of
reliable networks [25], the packing of objects with random weights [26], or the
allocation of scarce vaccines to prevent the occurrence of disease epidemics [27].
Moreover, the VaR is also used in real-world regulatory frameworks such as Basel
or Solvency.
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Besides considering the quantile minimization, which already poses a compu-
tational challenge on its own, we study both continuous and mixed-integer linear
settings, which are required by many real-world problems to properly model plan-
ning or investment decisions. Thus, in total, we consider the challenging class of
mixed-integer linear quantile minimization problems. To this end, stochasticity
is modeled via finite scenario sets, which leads to large-scale mixed-integer linear
problems that can hardly be solved with state-of-the-art solvers.

Throughout the paper we use two examples for the general class of problems
under consideration: A maintenance planning problem in electricity networks as
it was posed in the EURO/ROADEF challenge 2020 and a variant of the classic
portfolio optimization problem. The grid operation based outage maintenance
planning problem (MPP) consists in determining the start time of maintenance
interventions in a high-voltage transmission network over a given time horizon. Each
of the interventions lasts a certain number of time units that depends on the start
time of the intervention. All interventions must be planned and finished before
the end of the time horizon. Further, some interventions cannot take place at the
same time. Finally, each intervention consumes resources and the total amount of
resources used at each time step is bounded from below and above. The objective is
to minimize the risk of the maintenance plan. More precisely, a set of scenarios is
given and for each such scenario, we know, at each time period, the risk value of
each intervention. The goal is to minimize a combination of the expectation and
the quantile of the risk.

The second problem is a variant of the well-known portfolio optimization problem.
The goal in portfolio optimization is twofold: maximize the return and minimize the
risk for which different measures have been proposed; see, e.g., [4, 9, 16, 18]. Among
them, the VaR or τ -quantile has attracted particular attention, namely because it is
used to measure market risk by regulators; see, e.g., [3] and the references therein.

As we already mentioned above, the studied models lead to large-scale mixed-
integer linear problems (MILPs). For these problems, we develop tailored solution
techniques. In Section 2, we introduce the general problem class and the two
specific examples. In Section 3, we propose problem-tailored valid inequalities. They
are derived from duality theory applied to a properly chosen linear optimization
problem that models the quantile. In Section 4, we present an overlapping alternating
direction method that serves as a primal heuristic for quickly computing feasible
points of good quality. In Section 5, we then present an adaptive scenario clustering
method for which we prove that it computes an approximate global optimal solution
after finitely many iterations. We illustrate the computational impact of all presented
techniques in our numerical study in Section 6 before we close this paper with some
concluding remarks and a brief discussion of potential future research in Section 7.

2. Problem Statement

In this section, we first state the general problem class that we consider in the
following. Afterward, we present two specific examples for the general modeling
framework to underline the importance of the studied class of problems.

We consider a discrete set of indices t ∈ T = {1, . . . , T}. With this at hand, the
general problem is given by

min
x

α
∑

t∈T
E[c>t x] + (1− α)

∑

t∈T
f
(
Q[c>t x]

)
(1a)

s.t. x ∈ X ⊆ RN . (1b)
The feasible set X is a non-empty and closed set that may also include integrality
restrictions for all or some of the variables. For each index t, we are given a finite
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set St of scenarios and for each scenario s ∈ St, cst is the respective cost vector and
pst ∈ [0, 1] is the associated probability with

∑
s∈St

pst = 1. The expected value is
then defined as

E[c>t x] =
∑

s∈St

pst (cst )
>
x

and the τ -quantile is given by

Q[c>t x] = min



q ∈ R :

∑

s∈N (q)

pst ≥ τ



 , N (q) =

{
s ∈ St : (cst )>x ≤ q

}
.

Further, α ∈ [0, 1] is a scaling factor that either puts more emphasis on the expected
value terms E[c>t x] or on the τ -quantile terms f(Q[c>t x]), where f is an arbitrary
function depending on the τ -quantile Q[·].

Usually, the τ -quantile Q[·] cannot be stated in closed form. However, it can
be expressed by the solution of the following quantile optimization problem in an
extended variable space:

Q[c>t x] = arg min
qt,ys

t

qt (2a)

s.t. qt ≥ (cst )>x+Ms
t (yst − 1), s ∈ St, (2b)

∑

s∈St

yst pt ≥ τ, (2c)

yst ∈ {0, 1}, s ∈ St, (2d)
where Ms

t are sufficiently large numbers. We will discuss specific choices of these
parameters later when we consider concrete examples. Using such a technique leads
to the reformulation

min
x,z

α
∑

t∈T
E[c>t x] + (1− α)

∑

t∈T
g(zt) (3a)

s.t. x ∈ X, zt ∈ Zt(x), t ∈ T , (3b)
where the (possibly mixed-integer) constraint sets Zt(x), which are required to model
the quantile, depend on the original variables x. Moreover, we have z = (zt)t∈T
and g is an arbitrary function depending on the newly introduced variable vector z.

To highlight the generality of this class of optimization models, we now consider
two examples in the following subsections.

2.1. The Maintenance Planning Problem. Let I denote the set of interventions
to be scheduled, let T = {1, . . . , T} be the set of time indices representing the time
horizon, i.e., the set of time steps at which interventions can take place, and let
R be the set of resources used for the interventions. Further, for each time t ∈ T ,
St represents the set of scenarios at this time, which all have the same probability,
i.e., pst = pt = 1/|St| holds for all t ∈ T . The duration of intervention i ∈ I, if it
starts at time t ∈ T , is given by ∆i

t. The amount of resource r used at time t by
intervention i starting at time t′ is given by rit′,t. The total amount of resource r
used by all interventions in process at time t must be at least lrt and cannot be larger
than urt . Moreover, σi,st′,t denotes the risk in scenario s at time t of intervention i if it
starts at time t′. We are also given a set D of triplets (i, j, t) such that intervention i
and j cannot be both in process at time t.

Intervention preemption is not allowed and each intervention must be terminated
at time T . We thus denote by T (i) = {t ∈ T : t+∆i

t ≤ T} the set of feasible starting
times of intervention i. Further, we denote by T (i, t) = {t′ ∈ T : t′ ≤ t, t′+ ∆i

t′ ≥ t}
the set of starting times of intervention i for which the intervention is in process at
time t.
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To model the maintenance planning problem (MPP), we use a set of binary
variables x: for i ∈ I and t ∈ T (i), we have xit = 1 if intervention i starts at time t.
Further, for t ∈ T , qt and εt are continuous variables representing the τ -quantile
as well as the maximum of zero and the difference between the τ -quantile and the
average of the risk at time t for the different scenarios in St, respectively. We now
present the MILP:

min
x,ε,q

α
1
T

∑

t∈T

1
|St|

∑

s∈St

∑

i∈I

∑

t′∈T (i,t)

σi,st′,tx
i
t′ + (1− α) 1

T

∑

t∈T
εt (4a)

s.t.
∑

t∈T (i)

xit = 1, i ∈ I, (4b)

lrt ≤
∑

i∈I

∑

t′∈T (i,t)

rit′,tx
i
t′ ≤ urt , r ∈ R, t ∈ T , (4c)

∑

t′∈T (i,t)

xit′ +
∑

t′∈T (j,t)

xjt′ ≤ 1, (i, j, t) ∈ D, (4d)

εt ≥ qt −
1
|St|

∑

s∈St

∑

i∈I

∑

t′∈T (i,t)

σi,st′,tx
i
t′ , t ∈ T , (4e)

εt ≥ 0, t ∈ T , (4f)
xit ∈ {0, 1}, i ∈ I, t ∈ T , (4g)
qt ∈ Zt(x), t ∈ T , (4h)

with x = (xt)t∈T and xt = (xit)i∈I . Analogous vector notation is used to define ε
and q.

This problem is the one of the EURO/ROADEF challenge 2020. The first term of
the objective function represents the average risk and the second term represents the
average excess, i.e., the average of the maximum of zero and the difference between
the risk’s τ -quantile and the risk’s average. They are weighted with coefficients α
and (1− α), α ∈ [0, 1], respectively. Constraints (4b) specify that each intervention
must start in exactly one time period. Constraints (4c) indicate that the amount
of each resource must be within its lower and upper bounds at each time period.
Constraints (4d) forbid pairs of interventions to be in process at the same time
when they are in conflict. Constraints (4e) together with the objective function
define the excess, at each time t, as the difference between the τ -quantile and the
average of the risks. Note that we used that all scenarios have the same probability
in this setting while defining the quantile. Finally, (4f)–(4g) specify the type of the
different variables.

The set Zt(x) appearing in Constraints (4h) is the set of optimal solutions of the
following problem that states that the quantile denoted by qt must be the smallest
value larger than or equal to at least pt = dτ |St|e risk values

∑
i∈I
∑
t′∈T (i,t) σ

i,s
t′,tx

i
t′ .

To this end, it uses the variables yst that take binary values. Thus, we have
Zt(x) = arg min

qt,ys
t

qt (5a)

s.t. qt ≥
∑

i∈I

∑

t′∈T (i,t)

σi,st′,tx
i
t′ +Ms

t (yst − 1), s ∈ St, (5b)

∑

s∈St

yst pt ≥ τ, (5c)

yst ∈ {0, 1}, s ∈ St. (5d)
Given that the objective function (4a) to be minimized is non-decreasing in the
quantiles qt, we can replace Constraints (4h) by Constraints (5b)–(5d). Note further
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that Problem (5) also ensures that every quantile is non-negative if all risks are
non-negative.

Constraints (5b) involve the big-M constants Ms
t that must be an upper bound

on
∑
i∈I
∑
t′∈T (i,t) σ

i,s
t′,tx

i
t′ . Given that variables xit satisfy (4b), we can choose

Ms
t =

∑

i∈I
max

t′∈T (i,t)
σi,st′,t.

A stronger big-M can be computed via
Ms
t = max

∑

i∈I

∑

t′∈T (i,t)

σi,st′,tx
i
t′ (6a)

s.t. (4b), (4c), (4d) and xit ∈ {0, 1}, i ∈ I, t′ ∈ T (i, t). (6b)
A compromise consists in solving the LP relaxation of (6).

Finally, to show that Problem (4) is a special instance of the general problem (1),
we first note that for every scenario s ∈ St, the random variable in the maintenance
planning problem is given by

(cst )>x =
∑

i∈I

∑

t′∈T (i,t)

σi,st′,tx
i
t′ , s ∈ St,

with associated probability pst = 1/|St|. Then, we replace the excess εt in the second
term of the objective function with

f(Q[c>t x]) = max



0, Q[c>t x]− 1

|St|
∑

s∈St

∑

i∈I

∑

t′∈T (i,t)

σi,st′,tx
i
t′



 .

Thus, the variables εt, t ∈ T , and Constraints (4e), (4f) and (4h) are not required
anymore.

By putting this all together and by re-scaling the objective function with T , for
X defined by (4b)–(4d) and (4g), we obtain

min α
∑

t∈T
E[c>t x] + (1− α)

∑

t∈T
f(Q[c>t x]) s.t. x = (xt)t∈T ∈ X,

which is exactly of the general form (1).

2.2. Portfolio Optimization. In the classic portfolio optimization problem [19]
we are given a budget B that we need to invest in a set of n equities so that
the expected return is maximized while the corresponding risk, calculated by the
standard deviation, is limited to be at most of a given value.

In recent years the risk measure that has mostly been used in the financial
community is the Value-at-risk (VaR) [4]: to minimize the portfolio’s risk, one
wishes that, for a given value of the parameter τ , that the corresponding quantile
(or VaR) is large.

According to [2], the VaR at the 100τ % confidence level of a risky portfolio is the
rate of return vq such that F (−vq) = 1− τ and F (·) is the cumulative distribution
function of the portfolio’s rate of return at the end of the period.

Let ri be the return of equity i after, e.g., one year, which is a random variable.
Moreover, let x ∈ Rn be the vector describing the investment. This means that we
invest xiB in equity i and it holds

n∑

i=1
xi = 1, x ≥ 0.

The return of the entire portfolio is then given by r>x.
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The resulting general model for portfolio optimization reads
max
x

αE[r>x] + (1− α)Q[r>x] (7a)

s.t. x ∈ X =
{
x ∈ Rn :

n∑

i=1
xi = 1, E[r>x] ≥ ρ, x ≥ 0

}
(7b)

with α ∈ [0, 1] and ρ is the minimum expected return of the portfolio.
This model is a particular case of Model (1) with T being a singleton and f being

the identity. Furthermore, to fit into our general framework it remains to change
the sign of all observed returns and minimize the objective function.

For α = 0 this problem amounts to minimize the VaR with a minimum expected
return. This is the model proposed in [9] and we can deduct from [4] that it
is strongly NP-hard. However, (7) also encompasses the possibility of a linear
combination of both objectives or to relax the constraint of a minimal expected
return by choosing a value for ρ that is sufficiently small.

A common approach to determine an optimal portfolio consists in using his-
torical or simulated data. In this context, return vectors rs with their associated
probability ps are given for a set S of scenarios so that

E[r>x] =
∑

s∈S
ps(rs)>x

and

Q[r>x] = max



q :

∑

s∈N (q)

ps ≥ 1− τ



 , N (q) =

{
s ∈ S : (rs)>x ≥ q

}

holds. Finally, the portfolio optimization problem (POP) can then be formulated as
the MILP

max
x,q,y

α
∑

s∈S
ps(rs)>x+ (1− α)q (8a)

s.t. x ∈ X, (8b)
q ≤ (rs)>x+Msys, s ∈ S, (8c)
∑

s∈S
psys ≤ τ, (8d)

ys ∈ {0, 1} , s ∈ S, (8e)
where Ms is a sufficiently large constant that can be set equal to

min



q :

∑

s′∈M(q)

ps
′ ≥ τ



−min

i
rsi with M(q) =

{
s′ ∈ S : max

i
rs
′
i ≤ q

}
.

Again, this is a special case of Model (3) in which z = (q, y) as well as g(z) = q
holds and Z(x) is defined by Constraints (8c)–(8e).

3. Valid Inequalities

For the ease of notation, we omit the index t in this section when there is no
possible ambiguity. Lower bounds on the variable q representing the τ -quantile can
be obtained in two different ways. The first one uses the strong-duality property of
linear optimization while the second one is based on a combinatorial argument.

In what follows, we set p(S̄) =
∑
s∈S̄ p

s and ci(S̄) =
∑
s∈S̄ c

s
i for S̄ ⊆ S.
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Proposition 1. The following inequality is valid for the quantile problem (2) for
all subsets S̄ ⊆ S with p(S̄) < τ :

(
τ − p(S̄)

)
q ≥

n∑

i=1

(
bi − ci(S̄)

)
xi (9)

with

bi = min
w

{∑

s∈S
csiw

s :
∑

s∈S
ws = τ, 0 ≤ ws ≤ ps, s ∈ S

}
.

Furthermore, it can be separated in polynomial time.

Proof. Let us consider ds := (cs)>x and ps, s ∈ S, as the realizations of a discrete
random variable and its corresponding probability. It is well known, see, e.g., [18],
that the τ -quantile q is the optimal solution of the linear optimization problem

max
u,q

τq −
∑

s∈S
psus (10a)

s.t. q − us ≤ ds, us ≥ 0, s ∈ S, (10b)
q ∈ R. (10c)

The dual of this problem reads
min
w

∑

s∈S
dsws (11a)

s.t.
∑

s∈S
ws = τ, (11b)

0 ≤ ws ≤ ps, s ∈ S. (11c)
Using strong duality of linear optimization, the quantile q must satisfy

τq ≥
∑

s∈S
dsws +

∑

s∈S
psus.

Since us ≥ max{q − ds, 0}, the following inequality is valid for all S̄ ⊆ S:
τq ≥

∑

s∈S
dsws +

∑

s∈S̄
ps(q − ds). (12)

In our general framework, the realization ds is a linear function
∑n
i=1 c

s
ixi so

that the resulting inequality (12) is nonlinear. However, the linear inequality (9)
can be obtained by noticing that
∑

s∈S
dsws =

∑

s∈S

n∑

i=1
csixiw

s ≥
n∑

i=1
bixi, bi = min

w

{∑

s∈S
csiw

s : (11b), (11c)
}

(13)

and by rearranging terms.
The separation problem for Inequality (9) is easy. Given a solution x̄, q̄, it suffices

to choose S̄ = {s ∈ S : q̄ >
∑n
i=1 c

s
i x̄i} and check whether the resulting inequality

(9) is violated. �
Note that these inequalities can be seen as a special case of the valid inequalities

discussed in [15] for bilevel optimization.
The second approach to derive a lower bound on the τ -quantile uses a covering

argument and can be seen as a generalization of the idea proposed by [21] for the case
where at most k linear inequalities among n given ones are allowed to be violated.
In our context, if for a subset S̄ of scenarios the probability satisfies p(S̄) < τ , then
q ≥ (cs)>x holds for some scenarios s ∈ S \ S̄.
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Proposition 2. The following inequality is valid for the quantile problem (2) for
all subsets S̄ ⊆ S with p(S̄) < τ :

(
τ − p(S̄)

)
q ≥

n∑

i=1
bi(S̄)xi (14)

where

bi(S̄) = min
w




∑

s∈S\S̄
csiw

s :
∑

s∈S\S̄
ws = τ − p(S̄), 0 ≤ ws ≤ ps, s ∈ S \ S̄



 .

Proof. Since p(S̄) < τ holds, there exists a subset Sc ⊂ S \ S̄ such that p(Sc) >
τ − p(S̄) and q ≥ (cs)>x holds for all s ∈ Sc. Taking a weighted sum of these
inequalities with coefficients vs for s ∈ Sc with∑s∈Sc vs = τ−p(S̄) and 0 ≤ vs ≤ ps
yields

(
τ − p(S̄)

)
q ≥

n∑

i=1

∑

s∈Sc

vscsixi. (15)

Inequality (14) is obtained by additionally using that
∑
s∈Sc vscsi ≥ bi(S̄) holds. �

Let us remark that the definitions of bi and bi(S̄) imply that bi = bi(∅). To avoid
any ambiguities in the sequel we will rather use the notation bi(∅).

The following example shows that a priori there is no dominance relation between
the inequalities in (14).

Example 1. Consider four scenarios s ∈ {1, 2, 3, 4} with equal probability 1/4 and
four variables xi with i ∈ {1, 2, 3, 4} and let csi = 0, if i = s and csi = 1 otherwise.
If τ = 3/4, then the inequalities in (14) are the following (after rescaling):

• q ≥ 2/3
∑4
i=1 xi, for S̄ = ∅

• q ≥∑i∈S̄ xi + 1/2
∑
i/∈S̄ xi, if |S̄| = 1

• q ≥∑i∈S̄ xi, if |S̄| = 2.
None of them is dominated by a nonegative linear combination of the others.

As shown in the following proposition, the separation of the inequalities in (14)
is difficult at least for a fixed value of p(S̄).

Proposition 3. For a fixed value of p(S̄), the separation problem for the inequalities
in (14) is NP-hard even in the special case where ps = 1/|S| for all s ∈ S, τ = k/|S|,
and csi ∈ {0, 1}.
Proof. Under the above conditions, the decision version (D-SEP) of the separation
problem of (14) for a point (x∗, q∗) consists in determining whether there exists a
subset S̄ such that |S̄| = B and

|S|
n∑

i=1
bi(S̄)x∗i > q∗(k −B) (16)

holds.
This problem clearly belongs to NP. Further, we show that CLIQUE reduces to it;

see, e.g., Problem GT19 in [10]. To this end, for an instance of CLIQUE given by a
graph G = (V,E) and an integer B, we define an instance of (D-SEP) as follows.
We set S = V , I = E, k = B + 1, x∗i = x∗ for all i, q∗ = x∗(B(B − 1)/2− 1), and
csi = 0 if edge i is incident to vertex s and csi = 1 otherwise. Then, |S|bi(S̄) =
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min
{
csi : s ∈ S \ S̄

}
= 1 if both end vertices of i belong to S̄ and 0 otherwise. Hence,

(16) reads

x∗|S|
n∑

i=1
bi(S̄) = x∗|E(S̄)| > q∗(k −B) = x∗(B(B − 1)/2− 1)

and is satisfied if and only if S̄ is a clique of size B. �
The following proposition shows that the inequalities in (14) are stronger than

the inequalities in (9).

Proposition 4. For S̄ ∈ S, Inequality (14) dominates Inequality (9).

Proof. The left-hand sides of both inequalities are equal. Further, we have

bi(∅) = min
w

{∑

s∈S
csiw

s :
∑

s∈S
ws = τ, 0 ≤ ws ≤ ps, s ∈ S

}
≤ ci(S̄) + bi(S̄)

Hence, the ith coefficient of (14) is larger than or equal to the corresponding one
of (9). �

The above results suggest to use the separation procedure for Inequality (9) but
to add the corresponding stronger inequality (14).

3.1. Application to the Maintenance Planning Problem. First recall that,
in the MPP, we have a set of scenarios St for each time step t and ps = 1/|St| holds
for all s ∈ St.

The following proposition shows how to adapt the valid inequalities (9) and (14)
to MPP.

Proposition 5. The following two inequalities are valid for the MPP (4) for all
subsets S̄ ⊆ St with |S̄| < dτ |St|e:

(
dτ |St|e − |S̄|

)
qt ≥

∑

i∈I

∑

t′∈T (i,t)


bit,t′(∅)−

∑

s∈S̄
σi,st′,tx

i
t′


 (17)

and (
dτ |St|e − |S̄|

)
qt ≥

∑

i∈I

∑

t′∈T (i,t)

bit,t′(S̄)xit′ , (18)

where

bit,t′(S̄) = min
w




∑

s∈S\S̄
σi,st′,tw

s :
∑

s∈S\S̄
ws = dτ |S|e − |S̄|, 0 ≤ ws ≤ 1, s ∈ S \ S̄





holds. In addition, Inequality (17) can be separated in polynomial time but is
dominated by Inequality (18), whose separation is NP-hard.

Proof. The objective function of Problem (10) can be rewritten as

max
u,q

dτ |S|eq −
∑

s∈S
us, (19)

which leads to the dual formulation
min
w

∑

s∈S
dsws (20a)

s.t.
∑

s∈S
ws = dτ |S|e, (20b)

0 ≤ ws ≤ 1, s ∈ S. (20c)
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Note that in the MPP, we need to select dτ |S|e scenarios with a risk lower than or
equal to the quantile, which allows us to use the constant in the right-hand side
of (20b) and in the objective function (19). Next, by strong duality, the quantile
must then satisfy

dτ |S|eq ≥
∑

s∈S
dsws +

∑

s∈S̄
(q − ds). (21)

After re-introducing the t-index and bounding the nonlinear terms as in (13),
Inequality (21) applied to the MPP reads

dτ |St|eqt ≥
∑

i∈I

∑

t′∈T (i,t)

bit,t′(∅)xit′ +
∑

s∈S̄


qt −

∑

i∈I

∑

t′∈T (i,t)

σi,st′,tx
i
t′


 , t ∈ T , (22)

with

bit,t′(∅) = min
w

{∑

s∈S
σi,st′,tw

s : (20b), (20c)
}
.

The coefficient bit,t′(∅) is the sum of the dτ |S|e smallest risk values σi,st′,t of intervention
i ∈ I at time t ∈ T that has started at t′ ∈ T (i, t).

By grouping the terms in q in the left-hand side, Inequality (22) becomes (17)
and its separation can be done in polynomial time since it suffices to include in S̄
each scenario s ∈ St if the value of the second term of the right-hand side of (22) is
positive for the current solution.

The proofs of the validity of Inequality (17), of the NP-hardness of its separation,
and the fact that it dominates Inequality (17) are similar to those of Propositions 2–4
while taking again into account that the scenarios of a set St have equal probability.

�
3.2. Application to the Portfolio Optimization Problem. In the case of the
portfolio optimization problem, given that −q is the (1− τ)-quantile of the linear
functions −(rs)>x, we can directly apply Propositions 2–4 with the modified data
c̃s = −rs, τ̃ = 1− τ , and variables q̃ = −q. The following proposition summarizes
these results.

Proposition 6. The following two inequalities are valid for the portfolio optimiza-
tion problem (8) for all subsets S̄ ⊆ S with p(S̄) < 1− τ :

(1− τ − p(S̄))q ≤
∑

i∈I
(bi(∅)−

∑

s∈S̄
psrsi )xi, (23)

and
(1− τ − p(S̄))q ≤

∑

i∈I
bi(S̄)xi, (24)

where

bi(S̄) = max
w




∑

s∈S\S̄
rsiw

s :
∑

s∈S\S̄
ws = 1− τ − p(S̄), 0 ≤ ws ≤ ps, s ∈ S \ S̄





holds. In addition, Inequality (23) can be separated in polynomial time but is
dominated by Inequality (24), whose separation is NP-hard.
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4. An Overlapping Alternating Direction Method

In this section, we describe an overlapping alternating direction method to solve
Problem (3). Alternating Direction Methods (ADMs) have been initially proposed
in [7, 13] as extensions of Lagrangian methods. They are iterative procedures
typically used to tackle problems defined by means of two vectors of decision
variables, which are subject to some coupling constraints. Instead of solving the
monolithic original problem, at each iteration of an ADM, one sequentially solves
two smaller subproblems each of which determines a new value for one of the variable
vectors, having fixed the value of the other one. In recent years, ADMs have been
exploited to solve large-scale optimization problems in the field of gas transport
[11, 12], machine learning [5, 17], bilevel problems [14], or supply chain problems
[22]. In our work, we devise an overlapping ADM (OADM), which can be seen as a
variant of an ADM to solve problems for which the vector of variables is partitioned
into three subvectors. As in usual ADMs, two subproblems related to two variable
subvectors are identified and solved sequentially. However, the remaining variable
subvector is to be determined in both subproblems, since it is part of both. The
idea behind OADMs can be traced back to overlapping Schwarz methods (see, e.g.,
[6, 20]) used in the field of partial differential equations to solve boundary value
problems defined on a domain that is a union of some intersecting subdomains.
Recently, it also has been applied very successfully to graph-structured problems;
see, e.g., [23].

In the following, we present an OADM for Problem (3), which is motivated by
the special structure of the problem itself and by our formulation for the quantile.
We observe that Problem (3) makes use of the pair (x, z) of variable vectors, where
z is introduced only to reformulate the term of the objective function (3a) that
is related to the quantile. Specifically, z ∈ Zt(x), t ∈ T , encodes the formulation
of the quantile. In both of our applications, sets of constraints Zt(x), t ∈ T , are
defined over two vectors of variables; see Problem (5) and (8). Hence, in this
section, we generalize the setting of Problem (3) by considering it defined over the
3-tuple (x, z1, z2) of variable vectors, where z1 and z2 are two subvectors of z, i.e.,
z = (z1, z2). In what follows, we may still write z in lieu of (z1, z2) if the explicit
decomposition is not required. In our OADM, we identify a subproblem related
to x and one related to z1. The variable vector z2 is overlapping, i.e., it is part
of the optimization for both subproblems. Finally, we highlight that our OADM
enjoys two special features. The value of z depends only on the one of x (see, e.g.,
Constraints (3b)) and z has no influence on the feasible set of the problem, i.e., at
each iteration, solving the two subproblems provides feasible points for Problem (3).

We apply the OADM outlined in Algorithm 1 to determine a feasible point of
Problem (3), which improves on an initial one (x0, z0

1 , z
0
2) in terms of the objective

function value. The initial point (x0, z0
1 , z

0
2) is defined by

x0 ∈ arg min
x

{
α
∑

t∈T
E[c>t x] : x ∈ X

}
,

z0 = (z0
1 , z

0
2) ∈

{
z = (zt)t∈T : zt = (z1,t, z2,t) ∈ Zt(x0)

}
.

Specifically, x0 is chosen among the solutions of the problem obtained by Problem (3)
after removing the constraints and the objective function term involving the variable
vector z. Clearly, (x0, z0) is a feasible point of Problem (3).

Now, we describe the iterative procedure outlined in Algorithm 1. In what follows,
we write

v(x, z) := α
∑

t∈T
E[c>t x] + (1− α)

∑

t∈T
g(zt)
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to lighten the notation. In Line 1, we set the iteration counter j to zero. In
iteration j+ 1, the algorithm first solves Problem (3) in the direction of (x, z2) while
having fixed the value of z1 to zj1 to determine a new value (xj+1, zj+1

2 ) for (x, z2);
see Line 3. Then, Problem (3) is solved in the direction of (z1, z2) while having fixed
the value of x to xj+1 to determine a new value (zj+1

1 , zj+1
2 ) for (z1, z2). Finally,

the algorithm stops (Line 7) once a given stopping criterion is met such as that a
time limit is reached or that the improvement of the value of the feasible points is
less than a given threshold.

Algorithm 1: An Overlapping Alternating Direction Method
Input :An initial feasible point (x0, z0 = (z0

1 , z
0
2)) of Problem (3).

Output :A feasible point (xj , zj = (zj1, z
j
2)) of Problem (3).

1 Set j ← 0.
2 while stopping criterion is not satisfied do
3 Compute

(xj+1, zj+1
2 ) ∈ arg minx,z2{v(x, zj1, z2,t) : x ∈ X, (zj1,t, z2) ∈ Zt(x), t ∈ T }.

4 Compute
zj+1 = (zj+1

1 , zj+1
2 ) ∈ arg minz=(z1,z2){v(xj+1, z) : zt ∈ Zt(xj+1), t ∈ T }.

5 Increment j ← j + 1.
6 end
7 return (xj , zj)

4.1. Application to the Maintenance Planning Problem. In this section, we
discuss how Algorithm 1 is applied to the MPP. Specifically, we apply our OADM
to the variant of Problem (4) that makes use of Constraints (5). This problem is
defined on four vectors of variables: x = (xt)t∈T with xt = (xit)i∈I , y = (yt)t∈T
with yt = (yst )s∈St , q = (qt)t∈T , and ε = (εt)t∈T . In the OADM for the MPP,
variable vectors x and y play the role of x and z1 and variable vectors q and ε play
the role of the overlapping variables z2 in Algorithm 1. Hence, Problem (4) is solved
in the direction of x and y and, in both directions, q and ε are also part of the
optimization. Here, we consider the variable vector ε as part of z. This leads to a
re-definition of the sets Zt(x), t ∈ T , where Constraints (4e) and (4f) are included.

An initial point (x0, y0, q0, ε0) of Problem (4) is retrieved as for the general case.
First, we select a planning x0 for the interventions among the feasible solutions
of the problem obtained by Problem (4) without taking into account the quantile
related variables, constraints, and the objective function term, i.e.,

x0 ∈ arg min
x



α

1
T

∑

t∈T

1
|St|

∑

s∈St

∑

i∈I

∑

t′∈T (i,t)

σi,st′,tx
i
t′ : (4b), (4c), (4d), (4g)



 .

Then, we determine values y0, q0, and ε0 for variable vectors y, q, and ε as when
solving the problem in the direction of y. We do so as follows.

In iteration j + 1, the subproblem in the x-direction corresponds to finding a
maintenance planning for the interventions of I in the time horizon T while having
fixed the scenarios used to calculate the quantile at each time instant. Hence, the
values xj+1 for x are selected among the feasible points of Problem (4) with the
values of variables in vector y fixed to yj . We observe that this subproblem is
NP-hard. Indeed, it can be reduced to the resource constrained scheduling problem;
see, e.g., [10]. Differently, solving the subproblem in the direction of y corresponds
to computing the value of the objective function (4a) having fixed a planning for
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the interventions xj+1. This can be done in a polynomial time. Specifically, given a
time instant t ∈ T , we first need to compute risk values σst related to each scenario
s ∈ St as

σst =
∑

i∈I

∑

t′∈T (i,t)

σi,st′,t(xj+1)it′ .

Then, we sort the scenarios in St by non-decreasing values of σst . The first pt
scenarios appearing in this order are those for which we set (yj+1)st = 1. For the
others, we set (yj+1)st = 0. This procedure is repeated for each time period t ∈ T .
4.2. Application to the Portfolio Optimization Problem. The OADM for
the portfolio optimization problem is applied to the MILP (8), which makes use
of variable vectors x ∈ X, y = (ys)s∈S , and a variable q. It sequentially solves a
subproblem in the x-direction and one in the y-direction. The variable q is part of
both optimization tasks. Solving the subproblem in the x-directions corresponds to
maximizing the portfolio revenue, having fixed the scenario selection. This problem
is modeled as a linear program (see the MILP (8)) and can thus be efficiently solved.
Solving the subproblem in the y-direction corresponds to computing the value of
the objective function (8a) knowing the portfolio composition. This can be done in
polynomial time.

The initial point computation and the iterative procedure are analogous to the
one discussed for the MPP. Hence, we do not report the details here.

5. An Adaptive Scenario Clustering Approach

This section presents an adaptive scenario clustering algorithm (ASCA) for solving
Problem (1) in the case function f is nondecreasing. Given t ∈ T , let us first denote
with c̄t the average cost at t, i.e.,

c̄t = 1
|St|

∑

s∈St

cst ,

which allows to rewrite the objective function (1a) as

min α
∑

t∈T
c̄tx+ (1− α)

∑

t∈T
f
(
Q[c>t x]

)
. (25)

Observe that the scenarios only have an impact on the quantile computations, i.e., on
the second term in (25). Thus, a large number of scenarios can make the resolution
of the problem computationally hard. Therefore, a way to approximate the general
problem is to reduce the size of each St by clustering its scenarios. This allows to
heuristically find feasible solutions of good quality quickly.

More precisely, let Ct be a partition of St into Kt ≤ |St| nonempty clusters.
Each cluster γ ∈ Ct has a cost vector cγt and a probability pγt . The ASCA consists
in solving a sequence of instances of Problem (1)—each defined over a clustered
scenario set Ct instead of the original set St. The probability pγt of cluster γ ∈ Ct is
given by

pγt =
∑

s∈γ
pst ,

which satisfies ∑

γ∈Ct

pγt = 1. (26)

We now present two strategies to associate a cost vector to each cluster of
scenarios. First, the average scenario clustering (ASC) associates with each cluster
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ASC MSC

v(x∗ASC) ≥ vUB

vMSC(x∗MSC) ≤ vLB
vMSC(x∗MSC) > vLB

v(x∗ASC) < vUB

Figure 1. State diagram of the adaptive scenario clustering algorithm.

γ ∈ Ct a cost vector cγt defined as follows:

(cγt )i = 1
|γ|
∑

s∈γ
(cst )i, i ∈ N.

Let us indicate with CASC
t the corresponding clustering of scenarios.

Further, the minimum scenario clustering (MSC) associates with each cluster
γ ∈ Ct a cost vector cγt defined as

(cγt )i = min {(cst )i : s ∈ γ} , i ∈ N.
Let us indicate with CMSC

t the corresponding clustering of scenarios.

Proposition 7. Let x∗ be an optimal solution of Problem (1) and let x∗ASC as
well as x∗MSC denote optimal solutions of Problem (1) solved on the scenarios set
CASC
t and CMSC

t , respectively. For a vector x ∈ X, let v(x) and vMSC(x) denote the
objective value w.r.t. x and (1a) defined over St and CMSC

t , respectively. Then,
vMSC(x∗MSC) ≤ v(x∗) ≤ min{v(x∗ASC), v(x∗MSC)}

holds.

Proof. We get the first inequality by construction of the MSC, hence vMSC(x∗MSC) ≤
vMSC(x∗) ≤ v(x∗). The second inequality is due to x∗ being optimal for Problem (1).

�
Thus, both ASC and MSC allow to compute a bound on v(x∗) while solving

Problem (1) over clustered scenario sets.

Corollary 1. Let x∗ be an optimal solution of Problem (1) and let x∗ASC as well as
x∗MSC denote optimal solutions of Problem (1) solved for the scenarios set CASC

t and
CMSC
t , respectively. For a vector x ∈ X, let v(x) and vMSC(x) denote the objective

value w.r.t. x and (1a) defined over St and CMSC
t , respectively. Then, if

vMSC(x∗MSC) = min{v(x∗ASC), v(x∗MSC)}
holds, x∗ASC or x∗MSC is an optimal solution of Problem (1).

Additionally, solving Problem (1) with the MSC can be improved using the valid
inequality (14).

Proposition 8. Given CMSC
t for a specific t ∈ T . Let γ be a cluster in CMSC

t such
that pγt > 1− τ holds. Then, in Problem (2) defining the quantile of t, it holds that

yγt = 1,
and the resulting inequality (2b) is dominated by the valid inequality (14) for S̄ =
St \ γ.
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Algorithm 2: Adaptive Scenario Clustering Algorithm.
Input :Threshold parameter ε ∈ (0, 1).

1 Set C0
t ← {St} for all t ∈ T , i.e., we start with a single cluster per index t.

2 Set j ← 0, vUB ← +∞, vLB ← −∞, and κ← true.
3 while (vUB − vLB)/vUB ≥ ε do
4 if κ then
5 Solve Problem (1) on CASC,j

t , let x∗ASC denote the optimal solution.
6 if v(x∗ASC) < vUB then
7 set xUB ← x∗ASC and vUB ← v(x∗ASC)
8 else
9 set κ← false.

10 end
11 else
12 Solve Problem (1) on CMSC+,j

t , let x∗MSC+ denote the optimal solution.
if vMSC+(x∗MSC+) > vLB then

13 set xLB ← x∗MSC+ and vLB ← vMSC+(x∗MSC+)
14 else
15 set κ← true.
16 end
17 if v(x∗MSC+) < vUB then
18 set xUB ← x∗MSC+ and vUB ← v(x∗MSC+).
19 end
20 end
21 Update j ← j + 1 and refine Cj−1

t , yielding Cjt .
22 end
23 return xUB

Proof. Since pγt > 1− τ , (2c) and (2d) imply yγt = 1. Furthermore, the definition of
bi(S̄t) with S̄ = St \ γ implies

bi(St \ γ)
τ − p(St \ γ) ≥ (cγt )i, i ∈ N, (27)

so that (14) dominates (2b). �
Proposition 8 hence tells us that given the set

B := {γ ∈ CMSC
t : pγt > 1− τ},

we can replace the quantile constraint (2b) associated to γ ∈ B by the valid
inequality (14) applied on the set St \ γ in the MSC. Furthermore, Constraint (2c)
reduces to ∑

γ∈CMSC
t

yγt p
γ
t ≥ τ −

∑

γ∈B
pγt .

We denote by MSC+ the resulting optimization problem. By construction, we thus
have that

vMSC(x∗MSC) ≤ vMSC+(x∗MSC+) ≤ v(x∗)
holds.

For what follows, we define vUB and vLB as the current best upper and lower
bounds on v(x∗). Additionally, Cjt stands for the clustering of St for t ∈ T in
iteration j of the algorithm. We indicate with CASC,j

t and CMSC+,j
t the instance of

Cjt where the cost vectors are calculated using ASC and MSC+, respectively.
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Algorithm 2 states the pseudo-code of our adaptive algorithm and Figure 1 shows
a state diagram of the inner while loop of the algorithm. The algorithm solves a
sequence of problems of Type (1) defined over CASC

t and CMSC+

t to improve the
lower or upper bound on v(x∗) as shown in Proposition 7. After each resolution,
the algorithm refines the previous clustering Cj−1

t , yielding Cjt for all t ∈ T . The
resulting clustering Cjt allows to have a better representation of the scenario set St.
This makes the next resolution of Problem (1) defined over CASC

t or CMSC+

t harder
to solve. However, the new clustering of scenarios will likely allow to compute a
better lower or upper bound on v(x∗). The sequence of resolutions over CASC

t is
then interrupted and switched to the resolution over CMSC+

t when v(x∗ASC) ≥ vUB.
Similarly, the sequence of resolution of Problem (1) over CMSC+

t is interrupted and
switched to CASC

t when vMSC+(x∗MSC+) ≤ vLB. Finally, the algorithm terminates
once we achieve a relative gap smaller than a prescribed tolerance ε, i.e.,

vUB − vLB
vUB

≤ ε.

Theorem 1. Let x∗ be an optimal solution of Problem (1) and let v(x∗) be its value.
Moreover, let Cjt be the clustering of St for index t ∈ T in iteration j. Suppose
further that there exists an index t ∈ T such that

|Cjt | > |Cj−1
t |, (28)

for all iterations j. Then, Algorithm 2 terminates after a finite number of cluster
refinements with a point x ∈ X such that

v(x)− v(x∗)
v(x) ≤ ε. (29)

Proof. Due to Inequality (28), each iteration of Algorithm 2 increases the size of Cjt
for at least one t ∈ T . Therefore, if the termination criterion (vUB − vLB)/vUB ≤ ε
is never satisfied, Cjt will increase in size over the iterations until being equal to St.
If Cjt equals St for all t ∈ T , then |γ| = 1 for all γ ∈ Cjt .

The cost vectors cγt for each γ ∈ Cjt correspond to the cost vector associated with
the single scenario in γ for both ASC and MSC clustering strategies. Otherwise, if
(vUB − vLB)/vUB ≤ ε is satisfied, we know that xASC also satisfies Inequality (29)
by Proposition 7. �
Remark 1. We close this section with the discussion of two features of the ASCA.

• The cluster refinement step in Line 21 of Algorithm 2 is done using kernel
density estimation (KDE). KDE allows to estimate the probability density
function of a random variable by using a set of samples of this random
variable [24]. The local minima of the estimated probability density function
then yield a splitting of the random variable samples. In our case, for a given
t ∈ T and γ ∈ Ct as well as a point x ∈ X, we compute the KDE of (cst )>x
using all s ∈ γ, which results in a splitting of γ. We use x∗ASC or x∗MSC
depending on whether the previous iteration j−1 of the ASCA used CASC,j−1

t

or CMSC,j−1
t . Additionally, only a subset of time steps T ⊆ T is selected for

re-clustering after each iteration of the ASCA. Given a parameter Θ ∈ (0, 1),
we compute this refinement set T to be the minimal subset of T satisfying
∑

t∈T

∣∣∣Q[c>t x; Cj−1
t ]−Q[c>t x]

∣∣∣ > Θ
∑

t∈T

∣∣∣Q[c>t x; Cj−1
t ]−Q[c>t x]

∣∣∣ .

Here, Q[·] is the original quantile, whereas Q[·; Cj−1
t ] denotes the quantile’s

approximation based on the clustering Cj−1
t . Hence, we select the subset of
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indices t ∈ T that have the biggest difference between their clustered and
their real quantile value for a chosen x.
• The solution processes in Lines 5 and 12 of Algorithm 2 can benefit from a
series of improvements. First, every valid inequality from MSC+ obtained
through Proposition 8 is kept in the subsequent MSC+ and ASC problems
even if the associated cluster is split in the refinement step. Second, the
OADM discussed in Section 4 is applied first, as a heuristic, for every MILP.
Here, we use xLB and xUB (see Algorithm 2) as initial iterates for the
OADM provided that we are in the corresponding clustered problem. Third,
we use the valid inequalities in (14) to speed up the MILP solution process.

6. Numerical Results

In this section, we present and discuss the results obtained by testing our methods
on the maintenance planning and on the portfolio optimization problem.

In what follows, we make use of the following notation. When assessing the perfor-
mance of our MILP models, we consider the following three configurations. We write
MILP meaning that we solve Model (4) when considering the MPP and Model (8)
when considering the POP, both without valid inequalities. We write MILPVI and
MILPVI∗ meaning that we solve Model (4) enriched with Inequalities (17) and
Inequalities (18), when considering the MPP. In the case of the POP, MILPVI and
MILPVI∗ stand for Model (8) enriched with Inequalities (23) and (24), respectively.
Furthermore, we add the superscript OADM to the notation yet introduced, when
the corresponding configuration is warm-started with an initial solution found by
OADM as described in Section 4. For example, in the case of the MPP, MILPOADM

VI∗
means that Model (4) enriched with Inequalities (18) is warm-started with an initial
solution found by the OADM. LetM denote the set of considered methods. For
m ∈ M we denote by vmLB and vmUB the best lower and upper bound values found
by method m on a given problem instance. For the sake of simplicity, we will
additionaly use vLB and vUB when discussing the upper or lower bound without
referring to a specific method.

In the following, we make some further comments regarding the tests we will
discuss in Sections 6.1 and 6.2. In configurations MILPVI and MILPVI∗ , we separate
valid inequalities only at the root node of the branch-and-bound tree, as preliminary
results showed that this is the best strategy. Indeed, separating them at each node
of the tree significantly reduces the time left to explore the tree itself, leading to
poor primal bounds—in particular in the case of the MPP. Moreover, the valid
inequalities considered in MILPVI∗ dominate the ones considered in MILPVI; see
Proposition 4. In the case of the MPP, this is reflected in the results obtained
by performing some preliminary tests. Hence, in Section 6.1 we only discuss the
results obtained by MILPVI∗ . This behavior does not occur when considering the
POP. Thus, in Section 6.2, we discuss the results of both configurations. Finally, we
remark that the solver does not struggle to provide feasible solutions of good quality
on the POP instances when solving MILP, MILPVI or MILPVI∗ ; see Section 6.2.
Consequently, we do not consider the inclusion of OADM and ASCA in the solution
procedure for this problem.

All computations have been executed on a remote server with 64 GB RAM and
an AMD Opteron 6176 SE processor with 12 cores and 2.30 GHz. The techniques
presented in this paper have been coded in C++14 and are compiled using g++

version 9.3.0. All MILP models are solved using Gurobi 9.1.0. The time limit is set
to 90 min for which the time for reading the instance is ignored.

6.1. Numerical Results for the Maintenance Planning Problem. We first
present the numerical results of the proposed methods when applied to the
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EURO/ROADEF 2020 challenge instances. Table 1 shows the main characteris-
tics of the these instances. Their names start with a capital letter that, based on
their alphabetical order, correspond to a different phases of the EURO/ROADEF
2020 challenge. Hence, instances with a name starting with a letter appearing later
in the alphabet are more likely to be computationally challenging. Note that we
omit to list those instances that are trivial due to a very small number of scenarios.

The size of some instances makes the time to complete multiple OADM iterations
too large w.r.t. the total computational time allowed. Thus, we set the stopping
criterion of the OADM so that only the first iteration is applied. Finally, the ASCA
computational parameters are given in Table 2 and have been chosen based on our
preliminary numerical tests.

Because of the large amount of EURO/ROADEF instances we use the bar plots
in Figures 2–5 to visually compare the different methods. Let M′ be the subset
of methods ofM considered in the bar plot. Then, for all m ∈ M′ the bar plots
show the re-scaled value of vmLB (left side) and vmUB (right side) on all instances. The
bars’ lengths are determined as follows. The left side of the bar plots is equal to
minm′∈M′{vm

′
LB : vm′LB > 0}/vmLB. The numerator minm′∈M′{vm

′
LB : vm′LB > 0} takes the

value of the smallest lower bound obtained by the methods inM′ while ignoring a
lower bound if the method m′ does not improve on vm′LB = 0. We apply a similar
rule for the right side of the bar plots using vmUB/maxm′∈M′{vm

′
UB : vm′UB <∞}. Here,

maxm′∈M′{vmUB : vm′UB < ∞} takes the value of the largest upper bound obtained
by the two compared methods without considering vm′UB if no incumbent is found
during the solution process of m′. The rescaling of vLB or vUB is constant for a
specific instance and therefore allows to easily visualize how they compare for two
different methods.

Hence, bars close to zero mean that the corresponding method performs better
compared to the other method on the respective bound. However, we would like
to draw attention to the fact that the spacing between the sides of the bars is not
representative of the relative gap given by (vUB − vLB)/vLB.

Figure 2 shows a comparison between the results obtained by MILP with those
obtained by MILPVI∗ . We observe that MILPVI∗ systematically outperforms MILP,
yielding a great improvement on both vLB and vUB, where the lower bound improves
more significantly than the upper bound. However, we remark that MILPVI∗ fails
to provide an incumbent solution for some instances within the time limit for which
MILP succeeds in doing so; see, e.g., B03. Most likely, this has two reasons. First,
additional time is needed to separate violated inequalities in the first node of the
branch and bound tree. Second, the model’s relaxations are a bit harder to solve
after adding valid inequalities due their increased size.

To counteract this effect, we also tested to apply the OADM described in Section 4
to the MILP model with valid inequalities for the MPP as a primal root node
heuristic. Figure 3 shows the comparison of MILPVI∗ and MILPOADM

VI∗ . In the
latter configuration, the point to warm-start is the result of a single iteration of
the OADM. The resulting bar plot only displays the instances with a significant
difference in vLB or vUB. Note that the one iteration of the OADM allows to obtain
an incumbent solutions for all the instances where the resolution of MILPVI∗ fails
to do so. For the remaining instances, we see that activating a single OADM step
mostly performs worse in terms of vUB. Also, for instance X05 and C13, the time
spent in one OADM iteration is rather long—hence harming the impact of the valid
inequalities on vLB.

Figure 4 shows the results obtained by the ASCA presented in Section 5 when
compared to the results obtained by MILP. One can observe that ASCA provides
better results in terms of both vLB and vUB. However, it fails to get a strictly positive
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Table 1. Characteristics of all the EURO/ROADEF 2020 challenge instances.

ID |I| |R| |T |
∑

t∈T
|St|
|T | |D|

A02 89 9 90 120.0 1869
A05 180 9 182 120.0 6791
A08 18 9 17 645.59 29
A11 54 9 53 639.53 96
A14 108 10 53 160.3 438
A15 108 10 53 320.06 438
B01 100 9 53 191.45 553
B02 100 9 53 191.45 404
B03 706 9 53 63.49 23674
B04 706 9 53 63.49 23674
B05 706 9 53 63.49 27276
B06 100 9 53 255.42 404
B07 250 9 53 191.45 3787
B08 119 9 42 254.07 550
B09 120 9 42 127.4 730
B10 398 9 25 192.4 3231
B11 100 9 53 191.45 679
B12 495 9 102 63.91 20205
B13 99 9 102 159.51 148
B14 297 9 191 95.5 14448
B15 495 9 250 63.38 61786
C01 120 9 53 191.45 1080
C02 120 9 53 191.45 828
C03 706 9 53 63.49 24260
C04 706 9 53 63.49 23638
C05 706 9 53 63.49 27276
C06 280 9 53 191.45 3404
C07 120 9 42 126.76 578
C08 426 9 25 192.88 3405
C09 110 9 53 191.45 718
C10 522 9 102 63.24 26250
C11 89 9 102 191.05 1474
C12 298 9 191 95.21 13996
C13 505 9 230 63.4 44384
C14 465 9 220 95.34 53628
C15 528 9 300 50.69 69715
X01 120 9 53 191.45 917
X02 706 9 53 63.49 24464
X03 280 9 53 191.45 3299
X04 426 9 25 188.84 4509
X05 467 9 220 95.3 48595
X06 528 9 300 50.64 79180
X07 209 9 300 63.52 8873
X08 209 9 300 63.6 6032
X09 548 9 30 156.97 8942
X10 460 9 35 159.54 7083
X11 521 9 131 63.35 35112
X12 522 9 131 63.92 35241
X13 336 9 212 95.27 19978
X14 613 9 180 63.73 57762
X15 613 9 180 63.32 64400
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Figure 2. Bar plot for minm′∈M′{vm
′

LB : vm′LB > 0}/vmLB (left side)
and vmUB/maxm′∈M′{vm

′
UB : vm′UB < ∞} (right side), where M′ is

composed of MILP (blue) and MILPVI∗ (yellow).
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Table 2. OADM parameters.

Θ OADM gap (Line 3) OADM gap (Line 4) Solver gap (Lines 5,12)

0.25 0.0025 0 0.025

∞ 1 0 1 ∞
B03
B10
B14
C02
C03
C06
C08
C12
C13
C14
X01
X02
X03
X04
X05
X06
X08
X09
X10
X12
X13
X15

Figure 3. Bar plot for minm′∈M′{vm
′

LB : vm′LB > 0}/vmLB (left side)
and vmUB/maxm′∈M′{vm

′
UB : vm′UB < ∞} (right side), where M′ is

composed of MILPOADM
VI∗ (blue) and MILPVI∗ (yellow). Only the

instances with a significant difference in the results for vLB and
vUB are displayed.

value for vLB for some of the more computationally challenging instances. As it is is
the case for MILPVI∗ , both for vLB and vUB we see that ASCA outperforms MILP.
For those instances for which ASCA fails to obtain a strictly positive value for vLB,
ASCA keeps improving vUB using the ASC problem during the initial iterations of
the algorithm. Since vUB keeps decreasing in every iteration, ASCA never enters
the MSC+ problem before reaching the given time limit. Thus, it never improves
on the vLB = 0 lower bound. Similarly, MILP fails to compute incumbent solutions
for some of the more computationally challenging instances and, hence, does not
decrease the vUB =∞ bound. On the contrary, ASCA always finds an improved
incumbent solution since it is designed to start solving the ASC problem in order to
decrease the value of vUB.

We close the comparison of the methods with Figure 5, which compares ASCA
and MILPOADM

VI∗ , i.e., it compares the methods that perform best in terms of vUB
and vLB. Considering the values of vLB, we see that MILPOADM

VI∗ always outperforms
ASCA except for the instances C14 and X05. The opposite situation occurs when
the two configurations are compared w.r.t. the values of vUB. The detailed results
obtained on the EURO/ROADEF instances with our methods are reported in Tables 5
and 6.
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Figure 4. Bar plot for minm′∈M′{vm
′

LB : vm′LB > 0}/vmLB (left side)
and vmUB/maxm′∈M′{vm

′
UB : vm′UB < ∞} (right side), where M′ is

composed of MILP (blue) and ASCA (yellow).
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∞ 1 0 1 ∞
A02
A05
A08
A11
A14
A15
B01
B02
B03
B04
B05
B06
B07
B08
B09
B10
B11
B12
B13
B14
B15
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X15

Figure 5. Bar plot for minm′∈M′{vm
′

LB : vm′LB > 0}/vmLB (left side)
and vmUB/maxm′∈M′{vm

′
UB : vm′UB < ∞} (right side), where M′ is

composed of MILPOADM
VI∗ (blue) and ASCA (yellow).
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6.2. Numerical Results for the Portfolio Optimization Problem. We build
a test set of 24 instances for the portfolio optimization problem following the proce-
dure used in [21] to generate instances for the probabilistically chance-constrained
portfolio optimization model. Our instances are characterized by n ∈ {20, 200}
equities and |S| = 200 equiprobable scenarios with ps = 1/|S|, s ∈ S. We draw the
components of return vectors rs, s ∈ S, using an independent uniform distribution
law on the interval [80, 150]. This means, we generate equities whose returns range
between a 20% loss and a 50% profit on the investment. The minimum expected
return ρ is set to 110, forcing an average portfolio return of 10% w.r.t. the invested
budget. We consider the VaR confidence level of 7.5 %, 15 %, and 22.5 %, i.e.,
τ ∈ {0.075, 0.15, 0.225} holds. Finally, the objective function weight α takes values
in set {0, 0.25, 0.5, 0.75}: Smaller values of α favor risk minimization over return
maximization—larger values of α favor the opposite behavior.

First, we discuss the results obtained by solving MILP, MILPVI, and MILPVI∗ on
the entire set of 24 instances. For MILPVI∗ , where the separation of the inequalities
in (24) is NP-hard (see Proposition 6), we separate them by means of the same
procedure employed for the inequalities in (23). By doing so, the time spent to
separate and build the two families of valid inequalities differs of a factor of ten.
However, in both cases, this time remains negligible w.r.t. the computational time
limit since it is always less than 4 s.

Table 3 reports the results obtained by solving the instances with the three
configurations. Each row of the table corresponds to an instance for which its
parameterization is summarized in columns two to six of the table. Then, for each
approach, we include three columns. The first and second columns contain the
lower and upper bounds (vLB and vUB), respectively. The third is a mixed time/gap
(tsolve/gap) column reporting either the computational time if the model is solved to
global optimality within the time limit or the relative optimality gap in percentage
(100 (vUB − vLB)/vLB) otherwise.

In general, all three configurations yield comparable results. The solver provides
feasible points of comparable value (vLB) on all the instances and it manages to
prove the optimality of the same four instances (W1, W4, W7, W10) on average
in 436, 438, and 604 seconds, respectively. The average optimality gap returned
by the solver on the instances for which optimality is not proven within the time
limit is 3.4% for the plain MILP and 2.6% for both configurations involving valid
inequalities.

To assess the impact of the two families of valid inequalities, we focus on those
instances that are not solved to optimality. In what follows, the upper bound
improvement of a configuration against another one, e.g., MILP against MILPVI,
is computed as (vMILP

UB − vMILPVI
UB )/vMILP

UB , where vMILP
UB and vMILPVI

UB are the upper
bounds returned by the solver for the configurations MILP and MILPVI, respectively.
The improvements regarding the optimality gap are computed analogously.

First, we observe that the introduction of either inequalities (23) or (24) yields
benefits in terms of both decreasing the upper bound and reducing the optimality
gap. Indeed, the upper bound and integrality gap improvements on average are
equal to 0.8 % and 18 % when comparing MILP to MILPVI and they are equal to
0.7 % and 16 % when comparing MILP to MILPVI∗ . The same trend emerges when
analyzing the values of the upper bound and the optimality gap after the solution
of the root node of the branch-and-bound tree; see Table 4.

As mentioned in the introduction of this section, although inequalities (23) are
dominated by inequalities (24) (see Proposition 6), this relation is not reflected in
the computational results. Indeed, when comparing MILPVI to MILPVI∗ , the upper
bound improvement in percent becomes negligible and the optimality gap tends
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to be smaller for MILPVI—on average of 3 %. Conversely, a slight dominance of
configuration MILPVI∗ over configuration MILPVI arises from the results obtained
after the solution of the root node; see Table 4. To explain this behavior, we note
that the separation procedure for inequalities (24) is heuristic.
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Table 4. Average upper bound and integrality gap percentage
improvements after the resolution of the root node of the branch-
and-bound tree

Comparison avg. vUB impr.(%) avg. gap impr.(%)
MILP vs. MILPVI 1.73 34.50
MILP vs. MILPVI∗ 1.77 39.15
MILPVI vs. MILPVI∗ 0.05 4.85

Finally, as opposed to the MPP, the solver does not fail to provide feasible points
of good quality on the instances of the portfolio optimization problem. Indeed, the
average optimality gap already after the resolution of root node is rather small. It
is equal to 11.5%, 6.1%, and 5.6% for configurations MILP, MILPVI and MILPVI∗ ,
respectively.

7. Conclusion

In this paper we considered several solution techniques for mixed-integer quantile
minimization problems. We stated the problem in a very general form and developed
techniques to strengthen the dual bound (via tailored valid inequalities), to find good
primal solutions quickly (via the overlapping ADM), and to derive provably optimal
solutions using a problem-specific approach (via the adaptive clustering method).
Our numerical results on the maintenance planning problem of the EURO/ROADEF
challenge 2020 and on the quantile-based version of the portfolio optimization
problem show that the combination of these techniques significantly outperforms
the application of general-purpose MILP solvers.

We briefly touched the field of chance constraints that is highly related to the
quantile minimization problems discussed in this paper. Thus, a natural topic of
future research will be to investigate on how to transfer our novel techniques to
improve solution methods for chance-constrained problems.
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